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Preface

These notes have been written for a University course in Physics and Astronomy,
that I taught for some years in Milano. The title is very similar to the one of the
famous Rybicki and Lightman book (Radiative Processes in Astrophysics), and not
by chance, since it hopes to have the same intuitive insight and attention for the
physical concepts, rather than for difficult mathematical demonstrations. The aim of
the book is to guide the students through the first steps in high energy astrophysics.
As such, it requires some, but not much, previous knowledge of general and classical
astronomy.

I think that the study of rather violent cosmic phenomena, born when we could
open other electromagnetic windows besides the visible band, has been very impor-
tant, enjoyable and productive, and it will continue to be so in the future, hopefully
also when the non-electromagnetic messengers (neutrinos and gravitational waves)
will be finally routinely detected. In general, these violent phenomena are associ-
ated to strong gravity, but also to fast velocities of extended objects. For this reason
I included an entire chapter dedicated to the use of special relativity with extended
objects. I hope it helps to clear up some confusing notations and formalisms.

Another field of interests in high energy astrophysics concerns the processes in-
volving electron and positron pairs, to which I dedicate another chapter. The last
chapter of the book is dedicated to active galactic nuclei. This is thought as illustra-
tive of all the processes explained in the first part of the book. It is then a good field
of research where we can apply the basics just learnt.

The style of the book has been intentionally kept rather informal, hoping that
this helps the understanding of the basic concepts, leaving to other books the duty
to offer more specialized material for the interested reader.

Finally, I would like to thank the three teachers of my scientific youth: Laura
Maraschi, Roland Svensson and Andy Fabian.

Gabriele GhiselliniMerate, Italy
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Chapter 1
Some Fundamental Definitions

1.1 Luminosity

By luminosity we mean the quantity of energy irradiated per second [erg s−1]. The
luminosity is not defined per unit of solid angle. The monochromatic luminosity
L(ν) is the luminosity per unit of frequency ν (i.e. per Hz). The bolometric lumi-
nosity is integrated over frequency:

L =
∫ ∞

0
L(ν)dν (1.1)

Often we can define a luminosity integrated in a given energy (or frequency) range,
as, for instance, the 2–10 keV luminosity. In general we have:

L[ν1−ν2] =
∫ ν2

ν1

L(ν)dν (1.2)

Examples:

• Sun Luminosity: L� = 4 × 1033 erg s−1

• Luminosity of a typical galaxy: Lgal ∼ 1011L�
• Luminosity of the human body, assuming that we emit as a black-body at a

temperature of (273 + 36) K and that our skin has a surface of approximately
S = 2 m2:

Lbody = SσT 4 ∼ 1010 erg/s ∼ 103 W (1.3)

This is not what we loose, since we absorb from the ambient a power L =
SσT 4

amb ∼ 8.3 × 109 erg/s if the ambient temperature is 20 C (=273 + 20 K).

G. Ghisellini, Radiative Processes in High Energy Astrophysics,
Lecture Notes in Physics 873, DOI 10.1007/978-3-319-00612-3_1,
© Springer International Publishing Switzerland 2013
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2 1 Some Fundamental Definitions

1.2 Flux

The flux [erg cm−2 s−1] is the energy passing a surface of 1 cm2 in one second. If a
body emits a luminosity L and is located at a distance R, the flux is

F = L

4πR2
; F(ν) = L(ν)

4πR2
; F =

∫ ∞

0
F(ν)dν (1.4)

1.3 Intensity

The intensity I is the energy per unit time passing through a unit surface located
perpendicularly to the arrival direction of photons, per unit of solid angle. The solid
angle appears: [erg cm−2 s−1 sterad−1]. The monochromatic intensity I (ν) has units
[erg cm−2 s−1 Hz−1 sterad−1]. It always obeys the Lorentz transformation:

I (ν)

ν3
= I ′(ν′)

(ν′)3
= invariant (1.5)

where primed and unprimed quantities refer to two different reference frames. The
intensity does not depend upon distance. It is the measure of the irradiated energy
along a light ray.

1.4 Emissivity

The emissivity j is the quantity of energy emitted by a unit volume, in one unit of
time, for a unit solid angle

j = erg

dV dtdΩ
(1.6)

If the source is transparent, there is a simple relation between j and I :

I = jR (optically thin source) (1.7)

1.5 Radiative Energy Density

We can define it as the energy per unit volume produced by a luminous source,
but we have to specify if it is per unit solid angle or not. For simplicity consider
the bolometric intensity I . Along the light ray, construct the volume dV = cdtdA

where dA (i.e. one cm2) is the base of the little cylinder of height cdt . The energy
contained in this cylinder is

dE = IcdtdAdΩ (1.8)
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In that cylinder I find the light coming from a given direction, I can also say that:

dE = u(Ω)cdtdAdΩ (1.9)

Therefore

u(Ω) = I

c
(1.10)

If I want the total u (i.e. summing the light coming from all directions) I must
integrate over the entire solid angle.

1.6 How to Go from L to u

There at least 3 possible ways, according if we are outside the source, at a large
distance with respect to the size of the source, or if we are inside a source, that in
turn can emit uniformly or only in a shell.

1.6.1 We Are Outside the Source

Assume to be at a distance D from the source (see Fig. 1.1). Consider the shell
of surface 4πD2 and height cdt . The volume of this shell is dV = 4πD2cdt . In
the time dt the source has emitted an energy dE = Ldt . This very same energy is
contained in the spherical shell. Therefore the energy density (integrated over the
solid angle) is:

u = dE

dV
= L

4πD2c
(1.11)

1.6.2 We Are Inside a Uniformly Emitting Source

Assume that the source is optically thin and homogeneous. In this case the energy
density will depend upon the mean escape time from the source. For a given fixed
luminosity we have that the longer the escape time, the larger the energy density
(more photons accumulate inside the source before escaping). Therefore:

u = L

V
〈tesc〉 (1.12)

For a source of size R one can think that the average escape time is 〈tesc〉 ∼ R/c, but
we should consider that this is true for a photon created at the center. If the photon
is created at the border of the sphere, it will have a probability ∼1/2 to escape
immediately, and a probability less than 1/2 to pass the entire 2R diameter of the
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Fig. 1.1 A source of
radius R emits a
luminosity L. The way to
calculate the energy density
of the emitted radiation is
different if we are outside the
source (at the distance D) or
inside the source

sphere. Therefore the mean escape time will be less that R/c. Indeed, for a sphere,
it is 〈tesc〉 ∼ (3/4)R/c Therefore:

u = 3L

4πR3

3R

4c
= 9

4

L

4πR2c
(1.13)

Note that this is more (by a 9/4 factor) than what could be estimated by Eq. 1.11
setting D = R. We stress that one can use Eq. 1.13 only for a thin source.

1.6.3 We Are Inside a Uniformly Emitting Shell

Assume that a spherical shell of radius R emits uniformly a luminosity L. In this
case the radiation energy density returns to be

u = L

4πR2c
(1.14)

and it is equal in any location inside the shell.

1.7 How to Go from I to F

The relation between the intensity I and the total flux F must account for the fact
that, in general, each element of the surface is seen under a different angle θ . See
Fig. 1.2. We should then consider the projected area, and introduce a cos θ term in
the integral:

F =
∫

I cos θdΩ (1.15)
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Fig. 1.2 This figure
illustrates the fact that each
element dA of the surface is
seen under a different angle
with respect to the normal �n

Fig. 1.3 The observer P sees
the spherical source as a disk
of angular radius θc. Each
element of the sphere has a
different projection

1.7.1 Flux from a Thick Spherical Source

If we see only the surface of a sphere, namely the source is optically thick, and if
the intensity is constant along the surface we have symmetry along the φ directions
and the solid angle dΩ = 2π sin θdθ . See Fig. 1.3. We get:

F =
∫

I cos θdΩ = 2πI

∫ θc

0
sin θ cos θdθ (1.16)

Here R = r sin θc. Therefore we have

F = 2πI

[
cos2 θ

2

]1

cos θc

= πI sin2 θc = πI

(
R

r

)2

(1.17)

At the surface, R = r , and we have F = πI .
Very far away, r 	 R, and we have F = πθ2

c I = IΩsource.

1.8 Radiative Transport: Basics

Once the radiation is produced in a given location inside the source, we have to see
how much of this can leave the source and reach the observer. To calculate that,
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we must introduce the absorption coefficient αν , whose dimension is [length−1]. It
is defined by the following equation, describing the decrement of Iν when passing
trough an infinitesimal path of length ds:

dIν = −ανIνds (1.18)

The absorption coefficient can be thought as the product of a density of “absorbers”
times the cross section of the absorbing process:

αν = nσν (1.19)

But inside a source, besides absorption, there is a contribution to Iν coming from
the emitters distributed along ds. The increment of Iν is

dIν = jνds (1.20)

Therefore, combining emission and absorption, we have the basic equation of radia-
tive transport:

dIν

ds
= −ανIν + jν (1.21)

We solve it in some specific cases:

1. Emission only:

dIν

ds
= jν → Iν = Iν,0 +

∫ S

0
jνds (1.22)

where S is the total emitting path.
2. Absorption only:

dIν

ds
= −ανIν → dIν

Iν

= −ανds (1.23)

Note that the form of this relation immediately implies that an exponential is
involved:

Iν(s) = Iν(s0)e
− ∫ s

s0
αν(s′)ds′

(1.24)

Before passing the layer, the intensity was Iν,0. While passing the layer of
length s, the intensity decreases exponentially.

3. Emission plus absorption: In this case it is convenient to introduce the optical
depth τν :

dτν = ανds = nσνds (1.25)

The transport equation then becomes:

dIν

ανds
= −Iν + jν

αν

→ dIν

dτν

= −Iν + jν

αν

(1.26)
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We can call source function the quantity Sν defined as

Sν = jν

αν

source function (1.27)

Then the formal solution of Eq. 1.26 is

Iν(τν) = Iν,0e
−τν +

∫ τν

0
e−(τν−τ ′

ν )Sν

(
τ ′
ν

)
dτ ′

ν (1.28)

here τν is the final value of τ ′
ν (i.e. when the intensity has traveled the entire

distance s). If Sν is constant:

Iν(τν) = Iν,0e
−τν + Sν

(
1 − e−τν

)
(1.29)

If Iν,0 = 0:

Iν(τν) = jν

αν

(
1 − e−τν

)
(1.30)

Now, a trick: multiply and divide the RHS by s = R (the dimension of the source)
to obtain:

Iν(τν) = jνR

ανR

(
1 − e−τν

) = jνR

(
1 − e−τν

τν

)
(1.31)

In this form it is immediately clear that when the source is optically thin (and
τν � 1), we have 1 − e−τν → 1 − 1 + τν and therefore

Iν(τν) = jνR, (τν � 1) (1.32)

When instead the source becomes optically thick, and τν 	 1, then;

Iν(τν) = jνR

τν

, (τν 	 1) (1.33)

Usually, this happens at low frequencies. The above equation explicitly shows
that the intensity we see from a thick source comes from a layer of width R/τν ,
i.e. the layer that is optically thin. In other words we always collect radiation
from a layer of the source, down to the depth at which the radiation can escape
without being absorbed (τlayer = 1).

1.8.1 The “cos θ Law”

We often say that the radiation of an optically thick source comes from “its surface”.
Also, we often say that the intensity received from a surface depends on the inclina-
tion of that surface, so that the received intensity is maximum for a face-on surface,
and negligible for a edge-on one. But can a surface emit? Certainly not! A “surface”
has two dimensions, and zero width. There is no room for any atom, inside a sur-
face! So, what do we mean for? Look at Fig. 1.4. Suppose that there is an emitting



8 1 Some Fundamental Definitions

Fig. 1.4 A layer of total optical depth τν 	 1 is observed face-on (left) and from an angle θ from
its normal (right). The two observers receive always the emission produced in the shell of unit
optical depth. But an optical depth of unity corresponds to the length AB (left) or CD (right). The
two lengths are equal (AB = CD), but one is inclined, therefore the two volumes are different (by
the factor DH/AB = cos θ )

layer. It is optically thick, but its τν cannot be infinity. . . The observer looking at the
layer face-on receives the radiation produced in a layer of optical depth τν ∼ 1. The
optical depth depends on the viewing angle. For a face-on observer, the layer con-
tributing to the emission is maximum, as it is the volume of the layer emitting the
unabsorbed radiation. For different viewing angles, the radiation reaching the ob-
server makes a path of the same length inside the layer (of unity optical depth), but
inclined. Consequently, the emitting volume is less, by a cos θ factor. The radiation
we receive is always produced in a volume, never in a surface. . .

1.9 Einstein Coefficients

The Einstein coefficients concern intrinsic properties of the emitting particles. As
such, they involve more general concepts than the emission or the absorption coef-
ficients. They concern the probability that a particle spontaneously emits a photon,
the probability to absorb a photon, and the probability to emit a photon under the
influence of another incoming photon (see Fig. 1.6). The latter concept, at first sight,
is weird. In the current world we are surrounded by electronic devices using lasers,
and therefore we are used to the concept of stimulated emission. This was how-
ever introduced by Einstein (in 1917) because, without it, he could not recover the
black-body formula.

Let us define a system in which the emitting electron can be in one of several
energy levels. Each level has a statistical weight gi . The simple case that comes into
mind is an atom. See Fig. 1.5.

Spontaneous Emission A21—This process corresponds to a jump of the elec-
trons from energy level 2 to level 1 by emitting a photon of energy hν corresponding
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Fig. 1.5 The shown 3 energy
levels have different
statistical weights gi

to the jump in energy E2 −E1. The subscripts 1 and 2 indicate energy levels 1 and 2,
but are not important, we can equivalently talk of a jump between the energy levels 5
and 4. . . and so on. The corresponding Einstein coefficient is A21. Therefore

A21 = transition probability for spont. emission
[
s−1] (1.34)

Absorption B12—This occurs when the electron is in level 1 and absorb a pho-
ton of energy hν that corresponds to the energy difference between levels 1 and 2.
The probability of one electron to make this transition depends on how many pho-
ton there are, and therefore to the intensity Jν of the radiation field. The latter is
averaged over the solid angle: Jν = (1/4π)

∫
IνdΩ .

B12Jν = transition probability for absorption per unit time (1.35)

Stimulated Emission B21—This occurs when the electron is in level 2, and the
arrival of a photon of energy hν corresponding to the energy difference between
levels 2 and 1 makes the electron jump to level 1 by emitting a photon. The energy

Fig. 1.6 Illustrative sketch for the processes of spontaneous emission, absorption and stimulated
emission
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of the emitted photon is the same of the energy of the incoming one. It can be shown
that also the direction and the phase of the two photons are the same. We then have
a coherent emission, at the base of all laser and maser devices. The probability of
one electron to make the 2 → 1 transition depends on how many photons there are,
and therefore on the radiation intensity:

B21Jν = transition probability for stimulated emission per unit time (1.36)

The Einstein coefficients are completely general, and are valid for any radiation field
(i.e. even out of equilibrium). They are valid even when we have a free particle,
(i.e. not an atom), because we can define even in that case the energy state of the
particle.

In particular, we can find the relations between the Einstein coefficients in the
particular case of equilibrium, that is when the transitions 2 → 1 are equal to the
transitions 1 → 2. Assume then that n1 and n2 are the number density of electrons
in the levels 1 and 2. We must have:

n1B12Jν = n2A21 + n2B21Jν (1.37)

Solving for Jν :

Jν = A21/B21

(n1/n2)(B12/B21) − 1
(1.38)

At equilibrium the ratio n1/n2 must be:

n1

n2
= g1

g2

e−E/kT

e−(E+hν)/kT
= g1

g2
ehν/kT (1.39)

where g1 and g2 are the statistical weights of the levels 1 and 2. Inserting in Eq. 1.38
we have

Jν = A21/B21

(g1B12/g2B21)ehν/kT − 1
(1.40)

We know that at equilibrium Jν must be equal to the black-body intensity Bν . For
this to happen it must be that:

g1B12 = g2B21

A21 = 2hν3

c2
B21

(1.41)

These are the relations among the Einstein coefficients. Although we have found
them in one particular case, these relations are always valid, also out of equilibrium,
because they concern intrinsic properties of the system (note for instance that they
do no depend on temperature). The relations between the Einstein coefficients imply
that we need to know only one of them to find the others.
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1.9.1 Emissivity, Absorption and Einstein Coefficients

The emissivity [erg s−1 cm−2 Hz−1 sterad−1] is related to the Einstein coefficient
A21. If n2 is the density of electrons in the state 2, we must have

jν = hν

4π
n2A21 (1.42)

The reason of the 4π is because n2A21 is the probability to emit a photon (for
spontaneous emission) in any direction, while the emissivity jν is for unit of solid
angle.

Also the stimulated emission produces photons. Why do we not include it the
calculus for the emissivity? Because, to have stimulated emission, we must have
the incoming radiation, and it is therefore more convenient to think to stimulated
emission as negative absorption. For the total absorption, consider the quantity ανIν .
This is the amount of energy absorbed for unit volume, time, frequency and solid
angle. We also have that n1B12Iν is the number of the 1 → 2 transitions per unit
time, volume and frequency. We must multiply by hν to have the energy (per second,
Hz, cm3) and divide by 4π to have the same quantity per unit solid angle. Iν drops
out and we have

αν = hν

4π
(n1B12 − n2B21)

= hν

4π

(
n1g2

g1
− n2

)
B21

=
(

n1g2

g1
− n2

)
A21c

2

8πν2

=
(

n1g2

n2g1
− 1

)
c2

2hν3
jν (1.43)

We conclude that absorption and emission are intimately linked, and knowing one
process is enough to derive the other one, from first principles. If a particle emits, it
can also absorb.

1.10 Mean Free Path

The mean free path (for a photon) is the average distance 
 traveled by a photon
without interacting. It corresponds to a distance for which τν = 1:

τν = 1 → σνn
ν = 1 → 
ν = 1

nσν

(1.44)
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Fig. 1.7 Random walk of a
photon inside a source

If a source has radius R and total optical depth τν > 1 we have:


ν = 1

σνn
= R

σνnR
= R

τν

(1.45)

1.10.1 Random Walk

Assume that a photon interacts through scattering with electrons inside a source of
radius R and optical depth τ > 1. It is a good approximation to assume that the
scattering angle is random, so the direction after a collision will be random. The
photon will travel “bouncing” from one electron to the next, each time traveling for
a mean free path. We then ask: (i) how many scatterings does it have to do before
escaping? (ii) How much time does it takes?

Figure 1.7 illustrates the random motion of a photon inside the source. Each seg-
ment corresponds to a free path, whose average length is 
. The total displacement
after N scatterings will be �R, but if we calculate �R simply summing all the vectors
�r1, �r2, �r3, . . . , �rN , we obtain 0.

To calculate the distance traveled by the photon we calculate the square of �R:
〈 �R2〉 = 〈�r2

1

〉 + 〈�r2
2

〉 + 〈�r2
3

〉 + 2〈�r1 · �r2〉 + 2〈�r1 · �r3〉 + · · · . (1.46)

The cross products, on average, vanish, because the cos θ between the vectors van-
ishes, on average. Therefore we remain with the squares only, and each term ri is,
on average, long as a mean free path. We have N of these terms. Therefore

〈 �R2〉 = N
〈�r2

i

〉 = N
2 →
√〈 �R2

〉 = √
N
 (1.47)

If we want to know how many scatterings, on average, a photon undergoes before
escaping a source of radius R, we write:

√
N = R



= Rσn = τ → N = τ 2 (1.48)
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Remember: this is valid only if τ > 1 (if τ < 1 then the majority of photons escape
the source without interacting. . . ).

The other question is how long does it take to escape. If t1 = 
/c is the average
time for one scattering, we have a total time ttot

ttot = Nt1 = τ 2 


c
= τ 2 R

Rσnc
= R

c

τ 2

τ
= τ

R

c
(1.49)

So, on average, the photons makes τ 2 scatterings before escaping a source with a
scattering optical depth τ > 1. Since each mean free path is long R/τ , the total
distance traveled by the photon is τR and of course the total time to escape is τR/c.
Beware that this is true on average. As we shall see, the formation of the high energy
spectrum through Comptonization involves those photons that make more than τ 2

scatterings, because in this way they can reach higher energies.
Just for fun, suppose that our Sun is uniform and completely ionized. It has a

radius R� = 7 × 1010 cm, and a mean density of 1 g cm−3.

• How many scatterings does a photon (created in the center) make before it can
escape?

• How long does it take to escape?

1.11 Thermal and Non-thermal Plasmas

By definition, a thermal plasma is characterized by a Maxwellian distribution of
particles. Therefore a non-thermal plasma is anything else. The non-relativistic
Maxwellian distribution is:

F(v)dv = 4πv2
(

m

2πkT

)3/2

e−mv2/2kT dv (1.50)

In this form, F(v) is normalized, i.e.
∫ ∞

0 F(v)dv = 1. This can be seen chang-
ing variable of integration, from v to x = mv2/(2kT ), and remembering that∫ ∞

0

√
xe−xdx = √

π/2.
It is worth to stress that the physics is in the exponential term, while the 4πv2dv

term is simply equal to dvxdvydvz (in three dimensions). This then suggests the
questions: it is possible to have a “Maxwellian-like” distribution in 2 dimensions?
And in one dimension?

Instead of the velocities we may consider the momenta p of the particles. If we
write

p ≡ γβmc (1.51)

where γ = 1/(1 − β2)1/2, the above relation is valid both for non-relativistic and
for relativistic velocities. The Maxwellian momenta distribution becomes (setting
Θ ≡ kT /(mc2)):
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F(p)dp = p2e−γ /Θ

Θm3c3K2(1/Θ)
dp (1.52)

where K2(1/Θ) is the modified Bessel function of the second kind.
Note the following:

• To define a temperature, the distribution of velocities must be isotropic.
• Written in terms of momenta, the Maxwellian distribution has the same form in

the relativistic limit.
• The Maxwellian distribution is very general, it is a result of statistical mechanics.

But to achieve this distribution, it is necessary that the particles exchange energy
among themselves.

• If competing processes are present (i.e. cooling) it is possible that one has a
Maxwellian distribution only in some interval of velocities/momenta (for instance
for low velocities).

• The exponential term e−E/kT contains the physics, the term p2 is simply due to
dpxdpydpz = 4πp2dp.

1.11.1 Energy Exchange and Thermal Plasmas

There are two main ways in which particles can exchange energy among them-
selves:

1. Collisions
2. Exchange of photons (emission and absorption; scattering)

Traditionally, one thinks to collisions as the main driver, and to Coulomb colli-
sions as the main mechanism. Of course, the more the collisions, the faster the en-
ergy exchange and the faster the relaxation towards the thermal equilibrium. We
have

# of collisions of a single particle

time
∝ density n

total # of collisions

time
∝ n2

(1.53)

However, the density n is not the only factor. The other factor is the energy of the
particle: the cross section decreases with the velocity of the particle (and then with
its energy, or the temperature of the plasma). This means that it is difficult to have
a Maxwellian in hot and rarefied plasmas.

Ask yourselves: what does it happen if I put particles all of the same energy in
a box with reflecting and elastic walls? Why should the energy of a single particle
change?
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Fig. 1.8 Sketch of the
trajectory of the charge q1 (of
mass m1 � m2) that is
deflected by the charge q2

1.11.2 Non-thermal Plasmas

In rarefied and hot plasmas, the relaxation time required to go to equilibrium,
namely to have sufficient energy exchanges among particles, is long compared to
the typical timescales of other processes, such as acceleration, cooling and escape.
The particle distribution responsible for the radiation we see is then shaped by these
other, more efficient, processes.

The queen of the non-thermal particle distribution is a power law:

N(E) = N0E
−p (1.54)

When all particles are relativistic we can equivalently write

N(γ ) = Kγ −p (1.55)

Usually, N is the density [cm−3] of the particles, but sometimes it can indicate the
total number. Furthermore, one can also specify if N(γ ) is per unit of solid angle
(when one has a distribution that is not isotropic), or not. One must also specify in
what energy range N(γ ) is valid, so in general N(γ ) has a low and a high energy
cutoff (γmin and γmax). Within these two limits, a power-law particle distribution has
no preferred energy (there is no peak or break).

Often one deals with a broken power-law distribution, defined by two power-laws
of slopes p1 and p2 joining at some γbreak.

The main acceleration process leading to a power-law distribution (but not the
only one) is shock acceleration. In this process a particle gains energy each time it
crosses the shock, and there is a probability, each passage, that the particle escape.
This is sufficient to yield a power-law distribution.

1.12 Coulomb Collisions

Figure 1.8 shows the trajectory of a particle of mass m1 and charge q1 when it passes
near a particle of mass m2 and charge q2. For the example in the figure the charges
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are of the same sign, and m2 	 m1. In general, we can introduce the reduced mass
μ defined as

μ = m1m2

m1 + m2
, μ −→ m1 if m2 	 m1 (1.56)

The impact parameter b corresponds to the minimum distance of the unperturbed
trajectory from the mass m2. The deflection angle θ is the angle between the in-
coming and outgoing velocity vectors (both measured at large distances from the
location of m2).

One also defines the quantity

tan θ/2 = b0(v)

b
→ b = b0(v)

tan θ/2
(1.57)

where b0(v) corresponds to the impact parameter for deflection angles of 90◦
(namely, when tan θ/2 = 1. In this case b0(v) = b). b0(v) is related to the elec-
trostatic force. One makes the approximation that the interaction between the two
particles is important only when the particle 1 is close to the particle 2. One can
then say that the interaction time is of the order of t ∼ b0/v. The acceleration can
then be approximated by a ∼ v/t ∼ v2/b0. On the other hand, the force responsible
for this acceleration is F = q1q2/b

2
0, and the acceleration is then a = q1q2/(μb2

0).
Equating the two expression for the acceleration we have:

b0(v) = q1q2

μv2
(1.58)

Therefore

b = b0(v)

tan θ/2
= q1q2

μv2 tan(θ/2)
(1.59)

1.12.1 Cross Section

It is easy to understand that particles with a large impact parameter will be deflected
much less than particles that could pass close to q2. Also, we can understand that
particles with larger velocities, thus interacting for a shorter time, will be deflected
less. We can simply write the infinitesimal cross section dσ as

dσ = 2πb|db|

= 2πb

∣∣∣∣∂b

∂θ
dθ

∣∣∣∣ (1.60)

The differential cross section (i.e. as a function of deflection angle) is
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dσ

dΩ
= 2πb

2π sin θ

∣∣∣∣∂b

∂θ

dθ

dθ

∣∣∣∣
= b

2 sin(θ/2) cos(θ/2)

∣∣∣∣ ∂

∂θ

[
b0(v)

tan(θ/2)

]∣∣∣∣

= (q1q2)
2

4 sin4(θ/2)μ2v4
(1.61)

For electron–proton interactions of non-relativistic particles:

dσ

dΩ
= e4

4m2
ev

4

1

sin4(θ/2)
, v � c (1.62)

In the relativistic case, accounting also for the magnetic moment of the electron:

dσ

dΩ
= e4

4m2
ev

4

1

γ 2

1 − β2 sin2(θ/2)

sin4(θ/2)
, v → c (1.63)

Note the following:

1.
dσ

dΩ
∝ v−4

The number of collisions in the unit of time is proportional to 〈σv〉 ∝ v−3

(a faster electron encounters more protons in the unit of time). For a Maxwellian,
〈v〉 ≈ T 1/2. Then, for the non-relativistic case:

# of collisions

time
∝ v−3 ∝ T −3/2 (1.64)

Collisions are then less frequent in hotter plasma.
2.

dσ

dΩ
∝ sin−4(θ/2)

Collisions with small deflections are largely favorite. This is because it is more
probable to have distant particles, rather than close ones.

3. As a consequence of (2), the field due to the spin (magnetic moment of the elec-
tron) is negligible with respect to the Coulomb one. Therefore, in general, the
term (1 − β2 sin2 θ/2) is negligible.

4. If we have electron–proton collisions,

dσ

dΩ
∝ e4

m2
ev

4
= e4

m2
eβ

4c4
= r2

0

β4

where r0 ≡ e2/mec
2 is the classical radius of the electron. We can see that for

non-relativistic particles the cross section can be much larger than the scattering
cross section σT = (8π/3)r2

0 .
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Fig. 1.9 A charge is moving
along a trajectory. At the time
t we measure the electric field
produced by the charge. To
find it out, we have to
calculate its position, velocity
and acceleration at the
retarded time tret

5. In the relativistic case:
dσ

dΩ
∝ 1

m2γ 2

This simply flags the fact the relativistic mass is larger (by a factor γ ): the particle
has more inertia, and deflects less, yielding a smaller cross section.

1.13 The Electric Field of a Moving Charge

The treatment follows Rybicky & Lightman (p. 80) and Jackson (§14.1). The elec-
tric and magnetic fields produced by a moving charge is:

�E(�r, t) =
[

q

k2R2

(�n − �β)

γ 2

]
tret

+ q

ck3R

{�n × [
(�n − �β) × �̇β]}

tret

�B(�r, t) = �n × �E
(1.65)

All the quantities must be evaluated at the retarded time (it is called retarded, but
is really a earlier time): at the retarded time the particle was at a distance R such
that tret + R/c is the time t (the time t is the time of the observer that measures the
electric field). See the sketch in Fig. 1.9.

We have the following definitions:

tret = t − R(tret)

c

k = 1 − �n · �β
�β = �v

c

γ = (
1 − β2)−1/2

(1.66)

We see that Eq. 1.65 for the electric field is made by two pieces.
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Fig. 1.10 The electric field produced by a charge initially in uniform rectilinear motion that is
suddenly stopped. At large distances, the electric field points to where the charge would be if it had
not been stopped. At closer distances, the electric field had time to “adjust” and points to where
the charge is. There is then a region of space where the electric field has to change direction. This
corresponds to radiation. The width of this region is c�t , where �t is the time needed to stop the
particle, namely, the �t during which the charge was decelerated

1. The first is called the velocity field: acceleration does not appear, and �E is pro-
portional to R−2.

2. The second is called acceleration field: it contains β̇ , i.e. the acceleration, and is

proportional to R−1. It is perpendicular to �n and to (�n − �β) × �̇β .

For a charge moving at a constant speed βc, we have only the velocity field. There
is something apparently weird associated to this field: it points at the location of the
particle at time t , not at the retarded time tret. This is due to the (�n − �β) term. If
the particle does not move, one recovers the usual �E = q �n/R2 Coulomb law. But
if does move, �E does not point in the �n direction, even if we have to calculate the
position of the particle at the retarded time. The (�n− �β) term makes the �E vector to
point somewhat along the �β direction.

Figure 1.10 illustrates in a graphic way what the radiation is. Suppose that a
charge, in uniform motion along a rectilinear path, is suddenly stopped. Very far
way, the observer “does not know” that the particle was stopped, and measures an
electric field assuming that the particle has instead continued its motion. The electric
vector then points to a point that would be occupied by the particle, if it had not
been stopped (dashed lines in Fig. 1.10). In a region closer to the particle, instead,
the information: “the particle is now at rest” has been propagated, and the �E points
radially to the actual position of the particle. In between these two regions, �E must

change direction (and value). The change is more pronounced perpendicularly to �̇β ,

and is negligible along �̇β (that here coincides with the direction of the velocity �β).
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The region where �E changes direction propagates in time (it goes at c), but its width
is always c�t .

1.13.1 Total Emitted Power: Larmor Formula

For simplicity, we specialize to the non-relativistic case and consider only the radia-
tive field. For simplicity, we omit the subscript “rad” to E and B . We set:

�β � 1

k = 1 − �n · �β → 1 (1.67)

�n − �β → �n
With these approximations we have:

�E(�r, t) = q

cR

[�n × (�n × �̇β)
]
tret

�B(�r, t) = �n × �E
(1.68)

To calculate the power per unit solid angle carried by this electromagnetic field let
consider the Poynting vector �S (in cgs units):

�S = c

4π
�E × �B = c

4π
| �E|2�n = c

4π

q2

c2R2

[�n × (�n × �̇β)
]2
tret

�n (1.69)

The power crossing a surface dA = R2dΩ is

dP = SdA = SR2dΩ −→ dP

dΩ
= SR2 (1.70)

Therefore

dP

dΩ
= q2

4πc

∣∣�n × (�n × �̇β)
∣∣2
tret

= q2

4πc
β̇2 sin2 θ

= q2

4πc3
a2 sin2 θ (1.71)

This is the Larmor formula for non-relativistic particles. The angle θ is the angle
between �n and the acceleration. The power is null along the acceleration, it is max-
imum perpendicularly to it. Integrating over the entire solid angle we have the total
power:

P =
∫

dP

dΩ
dΩ = 2πq2a2

4πc3

∫ 1

−1
sin2 θd(cos θ) = 2q2

3c3
a2 (1.72)
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Fig. 1.11 The pattern of the
radiation emitted by a charge
with its acceleration parallel
to the velocity (top) and
acceleration perpendicular to
the velocity (bottom)

1.13.2 Pattern

Equation 1.71 shows that the pattern of the emitted radiation has a maximum per-
pendicular to the acceleration, and vanishes in the directions parallel to it. Fig-
ure 1.11 shows two examples: in the top part the particle has β̇ ‖ β while in the
bottom part β̇ ⊥ β . The particle is non-relativistic.

Just for exercise, consider an antenna consisting of a linear piece of metal. It
is called a dipole antenna. What will be the pattern of the emitted radiation? See:
http://en.wikipedia.org/wiki/File:Felder_um_Dipol.jpg.

What will be the pattern of an oscillating electron?
We will soon see the modification occurring when the particle becomes relativis-

tic, both for the total emitted power and for the pattern of the emitted radiation.

http://en.wikipedia.org/wiki/File:Felder_um_Dipol.jpg


Chapter 2
Bremsstrahlung and Black Body

2.1 Bremsstrahlung

We will follow an approximate derivation. For a more complete treatment see [2]
and [1]. We will consider an electron–proton plasma.

Definitions:

• b: impact parameter
• v: velocity of the electron
• ne: number density of the electrons
• np: number density of the protons
• T : temperature of the plasma: mv2 ∼ kT → v ∼ (kT /m)1/2.

We here calculate the total power and also the spectrum of bremsstrahlung radiation.
We divide the procedure into a few steps:

1. We consider the interaction between the electron and the proton only when the
electron passes close to the proton. The characteristic time τ is

τ ≈ b

v
(2.1)

2. During the interaction we assume that the acceleration is constant and equal to

a ≈ e2

meb2
(2.2)

3. From the Larmor formula we get

P = 2e2a2

3c3
≈ e2

c3

e4

m2
eb

4
= e6

m2
ec

3b4
(2.3)

Note that we have dropped the 2/3 factor, since in this simplified treatment we
neglect all the numerical factors of order unity. Later we will give the exact result.
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4. Since there is a characteristic time, there is also a characteristic frequency,
namely τ−1:

ω ≈ 1

τ
= v

b
(2.4)

5. Therefore

P(ω) ≈ P

ω
= e6

m2
ec

3vb3
(2.5)

6. We can estimate the impact factor b from the density of protons:

b ≈ n
−1/3
p → b3 = 1

np
(2.6)

7. The emissivity j (ω) will be the power emitted by a single electron multiplied
by the number density of electrons. If the emission is isotropic we have also to
divide by 4π , since the emissivity is for unit solid angle:

j (ω) ≈ nenp

4π

e6

m2
ec

3

(
me

kT

)1/2

(2.7)

8. We integrate j (ω) over frequency. The integral will depend upon ωmax. What
should we use for ωmax? One possibility is to set �ωmax = kT . This would mean
that an electron cannot emit a photon of energy larger than the typical energy of
the electron. Seems reasonable, but we are forgetting all the electrons (and the
frequencies) that have energies larger than kT . In this way:

j =
∫ ωmax

0
j (ω)dω ∼ nenp

4π

e6

m2
ec

3

(
me

kT

)1/2
kT

�

= nenpe
6

4πm2
ec

3

(mekT )1/2

�
(2.8)

We suspect that in the exact results there will be the contribution of electrons
with energy larger than kT : since they belong to the exponential part of the
Maxwellian, we suspect that in the exact result there will be an exponential. . .

9. The exact result, considering also that ν = ω/(2π), is

j (ν) = 8

3

(
2π

3

)1/2 nenpe
6

m2
ec

3

(
me

kT

)1/2

e−hν/kT ḡff

j = 4

3π

(
2π

3

)1/2 nenpe
6

m2
ec

3

(mekT )1/2

�
ḡff

(2.9)

The Gaunt factor ḡff depends on the minimum impact factor which in turn deter-
mines the maximum frequency. Details are complicated, but see [2, pp. 158–161]
for a more detailed discussion.
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We have treated the case of an electron–proton plasma. In the more general case,
the plasma will be composed by nuclei with atomic number Z and number density n.
The emissivity will then be proportional to Z2. This is because the acceleration
of the electron will be a = Ze2/(meb

2) (see point 2), and we have to square the
acceleration to get the power from the Larmor formula. In cgs units we have:

j (ν) = 5.4 × 10−39Z2neniT
−1/2e−hν/kT ḡ

j = 1.13 × 10−28Z2neniT
1/2ḡ

(2.10)

2.1.1 Free–Free Absorption

If the underlying particle distribution is a Maxwellian, we can use the Kirchoff law
to find out the absorption coefficient. If Bν is the intensity of black body emission,
we must have

Sν ≡ jν

αν

= Bν = 2hν3

c2

1

ehν/kT − 1
(2.11)

In these cases it is very simple to find αν once we know jν . Remember: this can be
done only if we have a Maxwellian. If the particle distribution is non-thermal, we
cannot use the Kirchoff law and we have to go back to a more fundamental level,
namely to the Einstein coefficients. Using Eq. 2.11 we have:

αff
ν = jν

Bν

= 4

3

(
2π

3

)1/2
Z2nenie

6

hm2
ec

2

(
mec

2

kT

)1/2 1 − e−hν/kT

ν3
ḡff (2.12)

In cgs units [cm−1] we have

αff
ν = 3.7 × 108 Z2neni

T 1/2

1 − e−hν/kT

ν3
ḡff (2.13)

When hν � kT (Raleigh–Jeans regime) this simplifies to

αff
ν = 0.018

Z2neni

T 3/2ν2
ḡff (2.14)

Figure 2.1 shows the bremsstrahlung intensity from a source of radius R = 1015 cm
and ne = np = 1010 cm−3. The three spectra correspond to different temperatures.
Note that for smaller temperatures the thin part of Iν is larger (Iν ∝ T −1/2). On
the other hand, at larger T the spectrum extends to larger frequencies, making the
frequency integrated intensity to be larger for larger T (I ∝ T 1/2). Note also the
self-absorbed part, whose slope is proportional to ν2. This part ends when the optical
depth τ = ανR ∼ 1.
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Fig. 2.1 The bremsstrahlung
intensity from a source of
radius R = 1015 cm, density
ne = np = 1010 cm−3 and
varying temperature. The
Gaunt factor is set to unity for
simplicity. At smaller
temperatures the thin part of
Iν is larger (∝T −1/2), even if
the frequency integrated I is
smaller (∝T 1/2)

Fig. 2.2 The bremsstrahlung
intensity from a source of
radius R = 1015 cm,
temperature T = 107 K. The
Gaunt factor is set to unity for
simplicity. The density
ne = np varies from
1010 cm−3 (bottom curve) to
1018 cm−3 (top curve),
increasing by a factor 10 for
each curve. Note the
self-absorbed part (∝ν2), the
flat and the exponential parts.
As the density increases, the
optical depth also increases,
and the spectrum approaches
the black-body one

2.1.2 From Bremsstrahlung to Black Body

As any other radiation process, the bremsstrahlung emission has a self-absorbed
part, clearly visible in Fig. 2.1. This corresponds to optical depths τν 	 1. The
term ν−3 in the absorption coefficient αν ensures that the absorption takes place
preferentially at low frequencies. By increasing the density of the emitting (and ab-
sorbing) particles, the spectrum is self-absorbed up to larger and larger frequencies.
When all the spectrum is self-absorbed (i.e. τν > 1 for all ν), and the particles be-
long to a Maxwellian, then we have a black-body. This is illustrated in Fig. 2.2: all
spectra are calculated for the same source size (R = 1015 cm), same temperature
(T = 107 K), and what varies is the density of electrons and protons (by a factor 10)
from ne = np = 1010 cm−3 to 1018 cm−3. As can be seen, the bremsstrahlung inten-
sity becomes more and more self-absorbed as the density increases, until it becomes
a black-body. At this point increasing the density does not increase the intensity
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any longer. This is because we receive radiation from a layer of unity optical depth.
The width of this layer decreases as we increase the densities, but the emissivity
increases, so that

Iν = jνR

τν

∝ nenpR

nenpR
→ constant (τν 	 1) (2.15)

2.2 Black Body

A black body occurs when “the body is black”: it is the perfect absorber. But this
means that it is also the “perfect” emitter, since absorption and emission are linked.
The black body intensity is given by

Bν(T ) = 2

c2

hν3

ehν/kT − 1
(2.16)

Expressed in terms of the wavelength λ this is equivalent to:

Bλ(T ) = 2hc2

λ5

1

ehc/λkT − 1
(2.17)

Note the following:

• The black body intensity has a peak. The value of it is different if we ask for the
peak of Bν or the peak of νBν .

The first is at hνpeak = 2.82kT .
The second is at hνpeak = 3.93kT .

• If T2 > T1, then: Bν(T2) > Bν(T1) for all frequencies.
• When hν � kT we can expand the exponential term: ehν/kT → 1 + hν/kT . . . ,

and therefor we obtain the Raleigh–Jeans law:

IRJ
ν = 2ν2

c2
kT (2.18)

• When hν 	 kT we have ehν/kT − 1 → ehν/kT and we obtain the Wien law:

IW
ν = 2hν3

c2
e−hν/kT (2.19)

See in Fig. 2.3 the Raleigh Jeans and the Wien approximations.
• The integral over frequencies is:

∫ ∞

0
Bνdν = σSB

π
T 4, σSB = 2π5k4

15c2h3
(2.20)

The constant σSB is called Stefan–Boltzmann constant.
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Fig. 2.3 The black body
intensity compared with the
Raleigh–Jeans and the Wien
law

• The energy density u of black body radiation is

u = 4π

c

∫ ∞

0
Bνdν = aT 4, a = 4σSB

c
(2.21)

The two constants (σSB and a) have the values:

σSB = 5.67 × 10−5 erg cm−2 deg−4 s−1

a = 7.65 × 10−15 erg cm−3 deg−4
(2.22)

• The brightness temperature is defined using the Raleigh–Jeans law, since IRJ
ν =

(2ν2/c2)kT we have

Tb = c2IRJ
ν

2kν2
(2.23)

• A black body is the most efficient radiator, for thermal plasmas and incoherent
radiation (we can have coherent processes that are even more efficient). For a
given surface and temperature, it is not possible to overtake the luminosity of the
black body, at any frequency, for any emission process.

• Let us try to find the temperature of the surface of the Sun. We know its radius
(700,000 km) and luminosity (L� = 4 × 1033 erg s−1). Therefore, from

L� = π4πR2
∫ ∞

0
Bνdν = 4πR2σSBT 4 (2.24)

we get:

T� =
(

L�
4πR2σSB

)1/4

∼ 5800 K (2.25)

• A spherical source emits black body radiation. We know its distance, but not its
radius. Find it. Suppose we do not know its distance. Can we predict its angular
size? And, if we then observe it, can we then get the distance?
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Chapter 3
Beaming

3.1 Rulers and Clocks

Special relativity taught us two basic notions: comparing dimensions and flow of
times in two different reference frames, we find out that they differ. If we measure
a ruler at rest, and then measure the same ruler when is moving, we find that, when
moving, the ruler is shorter. If we synchronize two clocks at rest, and then let one
move, we see that the moving clock is delaying. Let us see how this can be derived
by using the Lorentz transformations, connecting the two reference frames K (that
sees the ruler and the clock moving) and K ′ (that sees the ruler and the clock at
rest). For simplicity, but without loss of generality, consider a motion along the x

axis, with velocity v ≡ βc corresponding to the Lorentz factor Γ = (1 − β2)−1/2.
Primed quantities are measured in K ′. We have:

x′ = Γ (x − vt)

y′ = y

z′ = z

t ′ = Γ

(
t − β

x

c

) (3.1)

with the inverse relations given by

x = Γ
(
x′ + vt ′

)
y = y′

z = z′

t = Γ

(
t ′ + β

x′

c

)
.

(3.2)

The length of a moving ruler has to be measured through the position of its extremes
at the same time t . Therefore, as �t = 0, we have

x′
2 − x′

1 = Γ (x2 − x1) − Γ v�t = Γ (x2 − x1) (3.3)
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i.e.

�x = �x′

Γ
→ contraction (3.4)

Similarly, in order to determine a time interval a (lab) clock has to be compared with
one in the comoving frame, which has, in this frame, the same position x′. Then

�t = Γ �t ′ + Γβ
�x′

c
= Γ �t ′ → dilation (3.5)

An easy way to remember the transformations is to think to mesons produced in
collisions of cosmic rays in the high atmosphere, which can be detected even if their
lifetime (in the comoving frame) is much shorter than the time needed to reach the
earth’s surface. For us, on ground, relativistic mesons live longer (for the meson’s
point of view, instead, it is the length of the traveled distance which is shorter).

All this is correct if we measure lengths by comparing rulers (at the same time in
K) and by comparing clocks (at rest in K ′)—the meson lifetime is a clock. In other
words, if we do not use photons for the measurement process.

3.2 Photographs and Light Curves

If we have an extended moving object and if the information (about position and
time) are carried by photons, we must take into account their (different) travel paths.
When we take a picture, we detect photons arriving at the same time to our camera:
if the moving body which emitted them is extended, we must consider that these
photons have been emitted at different times, when the moving object occupied
different locations in space. This may seem quite obvious. And it is. Nevertheless
these facts were pointed out in 1959 [3, 5], more than 50 years after the publication
of the theory of special relativity.

3.2.1 The Moving Bar

Let us consider a moving bar, of proper dimension 
′, moving in the direction of its
length at velocity βc and at an angle θ with respect to the line of sight (see Fig. 3.1).
The length of the bar in the frame K (according to relativity “without photons”) is

 = 
′/Γ . The photon emitted in A1 reaches the point H in the time interval �te .
After �te the extreme B1 has reached the position B2, and by this time, photons
emitted by the other extreme of the bar can reach the observer simultaneously with
the photons emitted by A1, since the travel paths are equal. The length B1B2 =
βc�te, while A1H = c�te. Therefore

A1H = A1B2 cos θ → �te = 
′ cos θ

cΓ (1 − β cos θ)
(3.6)
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Fig. 3.1 A bar moving with
velocity βc in the direction of
its length. The path of the
photons emitted by the
extreme A is longer than the
path of photons emitted by B .
When we make a picture (or a
map) of the bar, we collect
photons reaching the detector
simultaneously. Therefore the
photons from A have to be
emitted before those from B ,
when the bar occupied
another position

Note the appearance of the term δ = 1/[Γ (1 − β cos θ)] in the transformation: this
accounts for both the relativistic length contraction (1/Γ ), and the Doppler effect
[1/(1 − β cos θ)] (see below, Eq. 3.15). The length A1B2 is then given by

A1B2 = A1H

cos θ
= 
′

Γ (1 − β cos θ)
= δ
′ (3.7)

In a real picture, we would see the projection of A1B2, i.e.:

HB2 = A1B2 sin θ = 
′ sin θ

Γ (1 − β cos θ)
= 
′δ sin θ (3.8)

The observed length depends on the viewing angle, and reaches the maximum (equal
to 
′) for cos θ = β .

3.2.2 The Moving Square

Now consider a square of size 
′ in the comoving frame, moving at 90° to the line
of sight (Fig. 3.2). Photons emitted in A, B , C and D have to arrive to the film plate
at the same time. But the paths of photons from C and D are longer → they have to
be emitted earlier than photons from A and B: when photons from C and D were
emitted, the square was in another position.

The interval of time between emission from C and from A is 
′/c. During this
time the square moves by β
′, i.e. the length CA. Photons from A and B are emitted
and received at the same time and therefore AB = 
′/Γ . The total observed length
is given by

CB = CA + AB = 
′

Γ
(1 + Γβ) (3.9)

As β increases, the observer sees the side AB increasingly shortened by the Lorentz
contraction, but at the same time the length of the side CA increases. The maximum
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Fig. 3.2 Left: A square
moving with velocity βc seen
at 90°. The observer can see
the left side (segment CA).
Light rays are assumed to be
parallel, i.e. the square is
assumed to be at large
distance from the observer.
Right: The moving square is
seen as rotated by an angle α

given by cosα = β

total length is observed for β = 1/
√

2, corresponding to Γ = √
2 and to CB = 
′√2,

i.e. equal to the diagonal of the square. Note that we have considered the square (and
the bar in the previous section) to be at large distances from the observer, so that the
emitted light rays are all parallel. If the object is near to the observer, we must
take into account that different points of one side of the square (e.g. the side AB
in Fig. 3.2) have different travel paths to reach the observer, producing additional
distortions. See the book by Mook and Vargish [2] for some interesting illustrations.

3.2.3 Rotation, Not Contraction

The net result (taking into account both the length contraction and the different
paths) is an apparent rotation of the square, as shown in Fig. 3.2 (right panel). The
rotation angle α can be simply derived (even geometrically) and is given by

cosα = β (3.10)

A few considerations follow:

• If you rotate a sphere you still get a sphere: you do not observe a contracted
sphere.

• The total length of the projected square, appearing on the film, is 
′(β + 1/Γ ). It
is maximum when the “rotation angle” α = 45° → β = 1/

√
2 → Γ = √

2. This
corresponds to the diagonal.

• The appearance of the square is the same as what seen in a comoving frame for
a line of sight making an angle α′ with respect to the velocity vector, where α′ is
the aberrated angle given by

sinα′ = sinα

Γ (1 − β cosα)
= δ sinα (3.11)

See Fig. 3.3 for a schematic illustration.

The last point is particularly important, because it introduces a great simplification
in calculating not only the appearance of bodies with a complex shape but also the
light curves of varying objects.
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Fig. 3.3 An observer that sees the object at rest at a viewing angle given by sinα′ = δ sinα, will
take the same picture as the observer that sees the object moving and making an angle α with
his/her line of sight. Note that sinα′ = sin(π − α′)

Fig. 3.4 Difference between
the proper time and the
photons arrival time. A lamp,
moving with a velocity βc,
emits photons for a time
interval �t ′e in its frame K ′.
The corresponding time
interval measured by an
observer at an angle θ , who
receives the photons produced
by the lamp is �ta = �t ′e/δ

3.2.4 Time

Consider a lamp moving with velocity v = βc at an angle θ from the line of sight.
In K ′, the lamp remains on for a time �t ′e. According to special relativity (“with-
out photons”) the measured time in frame K should be �te = Γ �t ′e (time dilation).
However, if we use photons to measure the time interval, we once again must con-
sider that the first and the last photons have been emitted in different locations, and
their travel path lengths are different. To find out �ta, the time interval between the
arrival of the first and last photon, consider Fig. 3.4. The first photon is emitted in
A, the last in B . If these points are measured in frame K , then the path AB is

AB = βc�te = Γβc�t ′e (3.12)

While the lamp moved from A to B , the photon emitted when the lamp was in A

has traveled a distance AD = c�te, and is now in point D. Along the direction of
the line of sight, the first and the last photons (the ones emitted in A and in B) are
separated by CD. The corresponding time interval, CD/c, is the interval of time �ta
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between the arrival of the first and the last photon:

�ta = CD

c
= AD − AC

c
= �te − β�te cos θ

= �te(1 − β cos θ)

= �t ′eΓ (1 − β cos θ)

= �t ′e
δ

(3.13)

If θ is small and the velocity is relativistic, then δ > 1, and �ta < �ts, i.e. we
measure a time contraction instead of time dilation. Note also that we recover the
usual time dilation (i.e. �ta = Γ �t ′e) if θ = 90°, because in this case all photons
have to travel the same distance to reach us.

Since a frequency is the inverse of time, it will transform as

ν = ν′δ (3.14)

It is because of this that the factor δ is called the relativistic Doppler factor. Its
definition is then

δ = 1

Γ (1 − β cos θ)
(3.15)

Note the two terms:

• The term 1/Γ : this corresponds to the usual special relativity term.
• The term 1/(1 − β cos θ): this corresponds to the usual Doppler effect.

The δ factor is the result of the competition of these two terms: for θ = 90° the
usual Doppler term is unity, and only “special relativity” remains: δ = 1/Γ . For
small θ the term 1/(1 − β cos θ) becomes very large, more than compensating for
the 1/Γ factor. For cos θ = β (i.e. sin θ = 1/Γ ) we have δ = Γ . For θ = 0° we have
δ = Γ (1 + β).

3.2.5 Aberration

Another very important effect happening when a source is moving is the aberration
of light. It is rather simple to understand, if one looks at Fig. 3.5. A source of pho-
tons is located perpendicularly to the right wall of a lift. If the lift is not moving, and
there is a hole in its right wall, then the light ray enters in A and ends its travel in B .
If the lift is not moving, A and B are at the same height. If the lift is moving with a
constant velocity v to the top, when the photon smashes the left wall it has a differ-
ent location, and the point B will have, for a comoving observer, a smaller height
than A. The light ray path now appears oblique, tilted. Of course, the greater v, the
more tilted the light ray path appears. This immediately stimulate the question: what
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Fig. 3.5 The relativistic lift, to explain relativistic aberration of light. Assume first a non-moving
lift, with a hole on the right wall. A light ray, coming perpendicularly to the right wall, enter
through the wall in A and ends its travel in B . If the lift is moving with a constant velocity v to
the top, its position is changed when the photon arrives to the left wall. For the comoving observer,
therefore, it appears that the light path is tilted, since the point B where the photon smashes into
the left wall is below the point A. What happens if the lift, instead to move with a constant velocity,
is accelerating?

happens if the lift, instead to move with a constant velocity, is accelerating? With
this example one can easily convince him/herself that the “trajectory” of the photon
would appear curved. Since, by the equivalence principle, the accelerating lift can-
not tell if there is an engine pulling him up or if there is a planet underneath it, we
can then say that gravity bends the light rays, and makes the space curved.

This helps to understand why angles, between two inertial frames, change. Call-
ing θ the angle between the direction of the emitted photon and the source velocity
vector, we have:

sin θ = sin θ ′

Γ (1 + β cos θ ′)
; sin θ ′ = sin θ

Γ (1 − β cos θ)

cos θ = cos θ ′ + β

1 + β cos θ ′ ; cos θ ′ = cos θ − β

1 − β cos θ

(3.16)

Note that, if θ ′ = 90°, then sin θ = 1/Γ and cos θ = β . Consider a source emitting
isotropically in K ′. Half of its photons are emitted in one emisphere, namely, with
θ ′ ≤ 90°. Then, in K , the same source will appear to emit half of its photons into a
cone of semiaperture 1/Γ .

Assuming symmetry around the angle φ, the transformation of the solid angle
dΩ is

dΩ = −2πd cos θ = dΩ ′

Γ 2(1 + β cos θ ′)2
= dΩ ′Γ 2(1 − β cos θ)2 = dΩ ′

δ2
(3.17)
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3.2.6 Intensity

We now have all the ingredients necessary to calculate the transformation of the
specific (i.e. monochromatic) and bolometric intensity. The specific intensity has
the unit of energy per unit surface, time, frequency and solid angle. In cgs, the units
are [erg cm−2 s−1 Hz−1 ster−1]. We can then write the specific intensity as

I (ν) = hν
dN

dt dν dΩ dA

= δhν′ dN ′

(dt ′/δ)δ dν′(dΩ ′/δ2) dA′

= δ3I ′(ν′) = δ3I ′(ν/δ) (3.18)

Note that dN = dN ′ because it is a number, and that dA = dA′. If we integrate over
frequencies we obtain the bolometric intensity which transforms as

I = δ4I ′ (3.19)

The fourth power of δ can be understood in a simple way: one power comes from
the transformation of the frequencies, one for the time, and two for the solid angle.
They all add up. This transformation is at the base of our understanding of relativis-
tic sources, namely radio-loud AGNs, gamma-ray bursts and galactic superluminal
sources.

3.2.7 Luminosity and Flux

The transformation of fluxes and luminosities from the comoving to the observer
frames is not trivial. The most used formula is L = δ4L′, but this assumes that we
are dealing with a single, spherical blob. It can be simply derived by noting that
L = 4πd2

LF , where F is the observed flux, and by considering that the flux, for a
distance source, is F ∝ ∫

Ωs
IdΩ . Since Ωs is the source solid angle, which is the

same in the two K and K ′ frames, we have that F transforms like I , and so does L.
But the emission from jets may come not only by a single spherical blob, but by,
for instance, many blobs, or even by a continuous distribution of emitting particles
flowing in the jet. If we assume that the walls of the jet are fixed, then the concept
of “comoving” frame is somewhat misleading, because if we are comoving with the
flowing plasma, then we see the walls of the jet which are moving.

A further complication exists if the velocity is not uni-directional, but radial,
like in gamma-ray bursts. In this case, assume that the plasma is contained in a
conical narrow shell (width smaller than the distance of the shell from the apex of
the cone). The observer which is moving together with a portion of the plasma,
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Fig. 3.6 Due to aberration of
light, the travel path of the a
light ray is different in the
two frames K and K ′

(the nearest case of a “comoving observer”) will see the plasma close to her going
away from her, and more so for more distant portions of the plasma. Indeed, there
could be a limiting distance beyond which the two portions of the shells are causally
disconnected.

Useful references are [1] and [4].

3.2.8 Emissivity

The (frequency integrated) emissivity j is the energy emitted per unit time, solid
angle and volume. We generally have that the intensity, for an optically thin source,
is I = ∫

�R
jdr , where �R is the length of the region containing the emitting parti-

cles. The emissivity transforms like j = j ′δ3, namely with one power of δ less than
the intensity.

To understand why, consider a slab with plasma flowing with a velocity parallel
to the walls of the slab, as in Fig. 3.6. The observer in K will measure a certain �R

which depends on her viewing angle. In K ′ the same path has a different length,
because of the aberration of light. The height of the slab h′ = h, since it is perpen-
dicular to the velocity. The light ray travels a distance �R = h/ sin θ in K , and the
same light ray travels a distance �R′ = h′/ sin θ ′ in K ′. Since sin θ ′ = δ sin θ , then
�R′ = �R/δ. Therefore the column of plasma contributing to the emission, for
δ > 1, is less than what the observer in K would guess by measuring �R. For sim-
plicity, assume that the plasma is homogeneous, allowing to simply write I = j�R.
In this case:

I = j�R = δ4I ′ = δ4j ′�R′ → j = δ3j ′ (3.20)

And the corresponding transformation for the specific emissivity is j (ν) =
δ2j ′(ν′).

Figure 3.7 illustrates another interesting example, taken from the work of Sikora
et al. [4]. Consider that within a distance R from the apex of a jet (R measured
in K), at any given time there are N blobs (10 on the specific example of Fig. 3.7),
moving with a velocity v = βc along the jet. To fix the ideas, let assume that beyond
R they switch off. If the viewing angle is θ = 90°, the photons emitted by each
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Fig. 3.7 Due to the differences in light travel time, the number of blobs that can be observed
simultaneously at any given time depends on the viewing angle and the velocity of the blobs. In
the top panel the viewing angle is θ = 90° and all the blobs contained within a certain distance R

can be seen. For smaller viewing angles, less blobs are seen. This is because the photons emitted
by the rear blobs have more distance to travel, and therefore they have to be emitted before the
photons produced by the front blob. Decreasing the viewing angle θ we see less blobs (3 for the
case illustrated in the bottom panel)

blob travel the same distance to reach the observer, who will see all the 10 blobs.
But if θ < 90°, the photons produced by the rear blobs must travel for a longer
distance in order to reach the observer, and therefore they have to be emitted before
the photons produced by the front blob. The observer will then see less blobs. To
be more quantitative, consider a viewing angle θ < 90°. Photons emitted by blob
number 3 to reach blobs number 1 when it produces its last photon (before to switch
off) were emitted when the blobs itself was just born (it was crossing point A). They
traveled a distance R cos θ in a time �t . During the same time, the blob number 3
traveled a distance �R = cβ�t in the forward direction. The fraction f of blobs
that can be seen is then

f = R − �R

R
= 1 − cβ�t

R
= 1 − β cos θ (3.21)

Where we have used the fact that �t = (R/c) cos θ . This is the usual Doppler factor.
We may multiply and divide by Γ to obtain

f = 1

Γ δ
(3.22)

The bottom line is the following: even if the flux from a single blob is boosted by
δ4, if the jet is made by many (N ) equal blobs, the total flux is not just boosted by
Nδ4 times the intrinsic flux of a blob, because the observer will see less blobs if
θ < 90°.
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3.2.9 Brightness Temperature

The brightness temperature is a quantity used especially in radio astronomy, and it
is defined by

TB ≡ I (ν)

2k

c2

ν2
= F(ν)

2πkθ2
s

c2

ν2
(3.23)

where we have assumed that the solid angle subtended by the source is �Ωs ∼ πθ2
s ,

and that the received flux is F(ν) = �ΩsI (ν). There are 2 ways to measure θs:

1. from VLBI observations, one can often resolve the source and hence directly
measure the angular size. In this case the relation between the brightness temper-
ature measured in the K and K ′ frames is

TB = δ3F ′(ν′)
2πkθ2

s

c2

δ2(ν′)2
= δT ′

B (3.24)

2. If the source is varying, we can estimate its size by requiring that the observed
variability time-scale �tvar is longer than the light travel time R/c, where R is
the typical radius of the emission region. In this case

TB >
δ3F ′(ν′)

2πk

d2
Aδ2

(c�t ′var)
2

c2

δ2(ν′)2
= δ3T ′

B (3.25)

where dA is the angular distance, related to the luminosity distance dL by dA =
dL/(1 + z)2.

There is a particular class of extragalactic radio sources, called Intra-Day Vari-
able (IDV) sources, showing variability time-scales of hours in the radio band. For
them, the corresponding observed brightness temperature can exceed 1016 K, a
value much larger than the theoretical limit for an incoherent synchrotron source,
which is between 1011 and 1012 K. If the variability is indeed intrinsic, namely not
produced by interstellar scintillation, then one would derive a limit on the beaming
factor δ, which should be larger than about 100.

3.2.10 Moving in a Homogeneous Radiation Field

Jets in AGNs often moves in an external radiation field, produced by, e.g. the ac-
cretion disk, or by the Broad Line Region (BLR) which intercepts a fraction of the
radiation produced by the disk and re-emits it in the form of emission lines. It is
therefore interesting to calculate what is the energy density seen by an observer
which is comoving with the jet plasma.

To make a specific example, as illustrated by Fig. 3.8, assume that a portion of
the jet is moving with a bulk Lorentz factor Γ , velocity βc and that it is surrounded
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Fig. 3.8 A real case:
A relativistic bob is moving
within the Broad Line Region
of a radio loud AGN, with
Lorentz factor Γ . In the rest
frame K ′ of the blob the
photons coming from 90° in
frame K are seen to come at
an angle 1/Γ . The energy
density as seen by the blob is
enhanced by a factor ∼Γ 2

by a shell of broad line clouds. For simplicity, assume that the broad line photons
are produced by the surface of a sphere of radius R and that the jet is within it. As-
sume also that the radiation is monochromatic at some frequency ν0 (in frame K).
The comoving (in frame K ′) observer will see photons coming from a cone of semi-
aperture 1/Γ (the other half may be hidden by the accretion disk): photons coming
from the forward direction are seen blue-shifted by a factor (1 + β)Γ , while pho-
tons that the observer in K sees as coming from the side (i.e. 90° degrees) will be
observed in K ′ as coming from an angle given by sin θ ′ = 1/Γ (and cos θ ′ = β) and
will be blue-shifted by a factor Γ . As seen in K ′, each element of the BLR surface
is moving in the opposite direction of the actual jet velocity, and the photons emit-
ted by this element form an angle θ ′ with respect the element velocity. The Doppler
factor used by K ′ is then

δ′ = 1

Γ (1 − β cos θ ′)
(3.26)

The intensity coming from each element is seen boosted as (cf. Eq. 3.19):

I ′ = δ′4I (3.27)

The radiation energy density is the integral over the solid angle of the intensity,
divided by c:

U ′ = 2π

c

∫ 1

β

I ′d cos θ ′

= 2π

c

∫ 1

β

I

Γ 4(1 − β cos θ ′)4
d cos θ ′

=
(

1 + β + β2

3

)
Γ 2 2πI

c
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=
(

1 + β + β2

3

)
Γ 2U (3.28)

Note that the limits of the integral correspond to the angles 0′ and 90° in frame K .
The radiation energy density, in frame K ′, is then boosted by a factor (7/3)Γ 2 when
β ∼ 1. Doing the same calculation for a sphere, one would obtain U ′ = Γ 2U .

Furthermore a (monochromatic) flux in K is seen, in K ′, at different frequencies,
between Γ ν0 and (1 + β)Γ ν0, with a slope F ′(ν′) ∝ ν′2. Why the slope ν′2? This
can be derived as follows: we already know that I ′(ν′) = δ′3I (ν) = (ν′/ν)3I (ν).
The flux at a specific frequency is

F ′(ν′) = 2π

∫ μ′
2

μ′
1

dμ′
(

ν′

ν

)3

I (ν) (3.29)

where μ′ ≡ cos θ ′, and the integral is over those μ′ contributing at ν′. Since

ν′

ν
= δ′ = 1

Γ (1 − βμ′)
→ μ′ = 1

β

(
1 − ν

Γ ν′

)
(3.30)

we have

dμ′ = − dν

βΓ ν′ (3.31)

Therefore, if the intensity is monochromatic in frame K , i.e. I (ν) = I0δ(ν − ν0),
the flux density in the comoving frame is

F ′(ν′) = 2π

∫ ν1

ν2

dν

βΓ ν′

(
ν′

ν

)3

I0δ(ν − ν0)

= 2π

Γβ

I0

ν3
0

ν′2; Γ ν0 ≤ ν′ ≤ (1 + β)Γ ν0 (3.32)

where the frequency limits corresponds to photons produced in an emisphere in
frame K , and between 0° and sin θ ′ = 1/Γ in frame K ′. Integrating Eq. 3.32 over
frequency, one obtains

F ′ = 2πI0Γ
2
(

1 + β + β2

3

)
= Γ 2

(
1 + β + β2

3

)
F (3.33)

in agreement with Eq. 3.28.

3.3 Superluminal Motion

In 1971 the Very Long Baseline Interferometry began, linking different radio-
telescopes that where distant even thousands of km. The resolving power of a tele-
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Fig. 3.9 Top: The apparent
velocity βapp as a function of
the viewing angle θ for
different values of Γ , as
labeled. Bottom: The
amplification δ4 as a function
of the viewing angle, for the
same Γ as in the top panel

scope is of the order of

φ ∼ λ

D
(3.34)

where λ is the wavelength to be observed, and D is the diameter of the telescope or
the distance of two connected telescopes. Observing at 1 cm, with two telescopes
separated by 1000 km (i.e.108 cm), means that we can observe details of the source
down to the milli-arcsec level (m.a.s.). The first observations of the inner jet of
radio-loud quasars revealed that the jet structure was not continuous, but blobby,
with several radio knots. Repeating the observations allowed us to discover that the
blobs were not stationary, but were moving. Comparing radio maps taken at different
times one could measure the angular displacement �θ between the position of the
blob. Knowing the distance d , one could then transform �θ is a linear size: �R =
d�θ . Dividing by the time interval �ta between the two radio maps, one obtains a
velocity

vapp = d�θ

�tA
(3.35)

With some surprise, in several objects this turned out to be larger than the light
speed c. Therefore these sources were called superluminal. The explanation of this
apparent violation of special relativity is in Fig. 3.4: the time interval �ta can be
much shorter than the emission time �te. With reference to Fig. 3.4, what the ob-
server measures in the two radio maps is the position of the blob in point A (first
map) and B (second map), projected in the plane of the sky. The observed displace-
ment is then:

CB = βc�te sin θ (3.36)
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Table 3.1 Useful relativistic transformations

ν = ν′δ frequency

t = t ′/δ time

V = V ′δ volume

sin θ = sin θ ′/δ sine

cos θ = (cos θ ′ + β)/(1 + β cos θ ′) cosine

I (ν) = δ3I ′(ν′) specific intensity

I = δ4I ′ total intensity

j (ν) = j ′(ν′)δ2 specific emissivity

κ(ν) = κ ′(ν′)/δ absorption coefficient

TB = T ′
Bδ brightn. temp. (size directly measured)

TB = T ′
Bδ3 brightn. temp. (size from variability)

U ′ = (1 + β + β2/3)Γ 2U radiation energy density within an emisphere

Dividing by �ta = �te(1 − β cos θ) we have the measured apparent velocity
as

vapp = βc�te sin θ

�ta
−→ βapp = β sin θ

1 − β cos θ
(3.37)

Ask yourself: Γ does not appear. Is it ok? At 0° the apparent velocity is zero. Is
it ok? At what angle βapp is maximized? What is its maximum value? Figure 3.9
shows βapp as a function of the viewing angle (angle between the line of sight and
the velocity) for different Γ . Is the apparent superluminal speed given by a real
motion of the emitting material? Can it be something else? If there are other possi-
bilities, how to discriminate among them?

Table 3.1 collects some of the most common Lorentz transformation, useful when
dealing with high energy cosmic sources.

3.4 A Question

Suppose that some optically thin plasma of mass m is falling onto a central object
with a velocity v and bulk Lorentz factor Γ . The central object has mass M and
produces a luminosity L. Assume that the interaction is through Thomson scattering
and that there are no electron–positron pairs.

(a) What is the radiation force acting on the electrons?
(b) What is the gravity force acting on the protons?
(c) What definition of limiting (“Eddington”) luminosity would you give in this

case?
(d) What happens if the plasma is instead going outward?
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Chapter 4
Synchrotron Emission and Absorption

4.1 Introduction

We now know for sure that many astrophysical sources are magnetized and have
relativistic leptons. Magnetic field and relativistic particles are the two ingredients
to have synchrotron radiation. What is responsible for this kind of radiation is the
Lorentz force, making the particle to gyrate around the magnetic field lines. Curi-
ously enough, this force does not work, but makes the particles to accelerate even if
their velocity modulus hardly changes.

The outline of this section is:

1. We will derive the total power emitted by the single electron. Total means inte-
grated over frequency and over emission angles. This will require to generalize
the Larmor formula to the relativistic case;

2. We will then outline the basics of the spectrum emitted by the single electron.
This is treated in several text-books, so we will concentrate on the basic concepts;

3. Spectrum from an ensemble of electrons. Again, only the basics;
4. Synchrotron self absorption. We will try to discuss things from the point of view

of a photon, that wants to calculate its survival probability, and also the point of
view of the electron, that wants to calculate the probability to absorb the photon,
and then increase its energy and momentum.

4.2 Total Losses

To calculate the total (=integrated over frequencies and emission angles) syn-
chrotron losses we go into the frame that is instantaneously at rest with the particle
(in this frame v is zero, but not the acceleration!). This is because we will use the
fact that the emitted power is Lorentz invariant:

Pe = P ′
e = 2e2

3c3
a′2 = 2e2

3c3

[
a′2‖ + a′2⊥

]
(4.1)
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where the subscript “e” stands for “emitted”. The fact that the power is invariant
sounds natural, since after all, power is energy over time, and both energy and time
transforms the same way (in special relativity with rulers and clocks). But be aware
that this does not mean that the emitted and received power are the same. They are
not!

The problem is now to find how the parallel (to the velocity vector) and per-
pendicular components of the acceleration Lorentz transform. This is done in text
books, so we report the results:

a′‖ = γ 3a‖
a′⊥ = γ 2a⊥

(4.2)

where γ is the particle Lorentz factor. One easy way to understand and remember
these transformations is to recall that the acceleration is the second derivative of
space with respect to time. The perpendicular component of the displacement is
invariant, so we have only to transform (twice) the time (factor γ 2). The parallel
displacement instead transforms like γ , hence the γ 3 factor.

The generalization of the Larmor formula is then:

Pe = P ′
e = 2e2

3c3

[
a′2‖ + a′2⊥

] = 2e2

3c3
γ 4[γ 2a2‖ + a2⊥

]
(4.3)

Don’t be fooled by the γ 2 factor in front of a2‖ . . . this component of the power is
hardly important: since the velocity, for relativistic particles, is always close to c,
it implies that one can get very very small acceleration in the same direction of the
velocity. This is why linear accelerators minimize radiation losses. For synchrotron
machines, instead, the losses due to radiation can be the limiting factor, and they
are of course due to a⊥: changing the direction of the velocity means large accel-
erations, even without any change in the velocity modulus. To go further, we have
to calculate the two components of the acceleration for an electron moving in a
magnetic field. Its trajectory, in general, will have a helical shape of radius rL (the
Larmor radius). The angle that the velocity vector makes with the magnetic field
line is called pitch angle. See Fig. 4.1. Let us denote it with θ . We can anticipate
that, in the absence of electric field and for a homogeneous magnetic field, the mod-
ulus of the velocity will not change: the magnetic field does not work, and so there
is no change of energy, except for the losses due to the synchrotron radiation itself.
So one important assumption is that at least during one gyration, the losses are not
important. This is almost always satisfied in astrophysical settings, but there are
indeed some cases where this is not true.

When there is no electric field the only acting force is the (relativistic) Lorentz
force:

FL = d

dt
(γmv) = e

c
v × B (4.4)
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Fig. 4.1 A particle gyrates
along the magnetic field lines.
Its trajectory has a helicoidal
shape, with Larmor radius rL
and pitch angle θ

The parallel and perpendicular components are

FL‖ = γm
dv‖
dt

= 0 → a‖ = 0

FL⊥ = γm
dv⊥
dt

= e
v⊥
c

B → a⊥ = evB sin θ

γmc

(4.5)

We can also derive the Larmor radius rL by setting a⊥ = v2⊥/rL, and so

rL = v2⊥
a⊥

= γmc2β sin θ

eB
(4.6)

The fundamental frequency is the inverse of the time occurring to complete one
orbit (gyration frequency), so νB = cβ sin θ/(2πrL), giving

νB = eB

2πγmc
= νL

γ
(4.7)

where νL is the Larmor frequency, namely the gyration frequency for sub-relativistic
particles. Larger B means smaller rL, hence greater gyration frequencies. Vice-
versa, larger γ means larger inertia, thus larger rL, and smaller gyration frequencies.
Substituting a⊥ given in Eq. 4.5 in the generalized Larmor formula (Eq. 4.3) we get:

PS = 2e4

3m2c3
B2γ 2β2 sin2 θ (4.8)

We can make it nicer (for future use) by recalling that:

• The magnetic energy density is UB ≡ B2/(8π).
• The quantity e2/(mec

2), in the case of electrons, is the classical electron radius r0.
• The square of the electron radius is proportional to the Thomson scattering cross

section σT, i.e. σT = 8πr2
0/3 = 6.65 × 10−25 cm2.

Making these substitutions, we have that the synchrotron power emitted by a single
electron of given pitch angle is:

PS(θ) = 2σTcUBγ 2β2 sin2 θ (4.9)
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In the case of an isotropic distribution of pitch angles we can average the term sin2 θ

over the solid angle. The result is 2/3, giving

〈PS〉 = 4

3
σTcUBγ 2β2 (4.10)

Now pause, and ask yourself:

• Is PS valid only for relativistic particles, or does it describe correctly the radiative
losses also for sub-relativistic ones?

• In the relativistic case the losses are proportional to the square of the electron
energy. Do you understand why? And for sub-relativistic particles?

• What happens of we have protons, instead of electrons?
• What happens for θ → 0? Are you sure? (that losses vanishes. . . ) Ok, but what

happens to the received power when you have the lines of the magnetic field along
the line of sight, and a beam of particles, all with a small pitch angles, shooting
at you?

• Why on earth there is the scattering cross section? Is this a coincidence or does it
hide a deeper fact?

4.2.1 Synchrotron Cooling Time

When you want to estimate a timescale of a quantity A, you can always write t =
A/Ȧ. In our case A is the energy of the particle. For electrons with an isotropic pitch
angle distribution we have

tsyn = E

〈PS〉 = γmec
2

(4/3)σTcUBγ 2β2
∼ 7.75 × 108

B2γ
s = 24.57

B2γ
yr (4.11)

In the vicinity of a supermassive AGN black hole we can have B = 103B3 Gauss
and γ = 103γ3, yielding tsyn = 0.75/(B2

3γ3) s. The same electron, in the radio lobes
of a radio loud quasar with B = 10−5B−5 Gauss, cools in tsyn = 246 million years.

4.3 Spectrum Emitted by the Single Electron

4.3.1 Basics

There exists a typical frequency associated to the synchrotron process. This is re-
lated to the inverse of a typical time. If the electron is relativistic, this is not the
revolution period. Instead, it is the fraction of the time, for each orbit, during which
the observer receives some radiation. To simplify, consider an electron with a pitch
angle of 90°, and look at Fig. 4.2, illustrating the typical patterns of the produced
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Fig. 4.2 Radiation patterns
for a non-relativistic particle
with the velocity parallel
(top) or perpendicular (mid)
to the acceleration. When the
particle is relativistic, the
pattern strongly changes due
to the aberration of light, and
is strongly beamed in the
forward direction

Fig. 4.3 A relativistic
electron is gyrating along a
magnetic field line with pitch
angle 90°. Its trajectory is
then a circle of radius rL. Due
to aberration, an observer will
“see it” (i.e. will measure an
electric field) when the
beaming cone of total
aperture angle 2/γ is
pointing at him

radiation for sub-relativistic electrons moving with a velocity parallel (top panel) or
perpendicular (mid panel) to the acceleration. In the bottom panel we see the pattern
for a relativistic electron (with v ⊥ a): it is strongly beamed in the forward direction.
This is the direct consequence of the aberration of light, making half of the photons
be emitted in a cone of semi-aperture angle 1/γ (which is called the beaming angle).
Note that this does not mean that half of the power is emitted within 1/γ , because
the photons inside the beaming cone are more energetic than those outside, and are
more tightly packed (do you remember the δ4 factor when studying beaming?).

To go further, recall what we do when we study a time series and we want to
find the power spectrum: we Fourier transform it. In this case we must do the same.
Therefore if there is a typical timescale during which we receive most of the signal,
we can say that most of the power is emitted at a frequency that is the inverse of that
time.

Look at Fig. 4.3: the relativistic electron emits photons all along its orbit, but it
will “shoot” in a particular direction only for the time

�te ∼ AB

v
= 2

γ

rL

v
= 1

v

2mcv

eB
= 2

2π

1

νL
= 2

2π

1

γ νB
(4.12)
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This is the emitting time during which the electron emits photons that will reach the
observer. We can approximate the arc AB with a straight segment if the electron is
relativistic, and the observer will then measure an arrival time �tA that is shorter
than �te:

�tA = �te(1 − β) = �te
(1 − β2)

1 + β
∼ �te

2γ 2
= 1

2πγ 3νB
(4.13)

The inverse of this time is the typical synchrotron (angular) frequency ωs = 2πνs,
so that:

νs = 1

2π�tA
= γ 3νB = γ 2νL = γ 2 eB

2πmec
(4.14)

This is a factor γ 3 greater than the fundamental frequency, and a factor γ 2 greater
than the Larmor frequency, defined as the typical frequency of non-relativistic par-
ticles. We expect that the particle emits most of its power at this frequency.

4.3.2 The Real Stuff

One can look at any text book for a detailed discussion of the procedure to calculate
the spectrum emitted by the single particle. Here we report the results: the power
per unit frequency emitted by an electron of given Lorentz factor and pitch angle is:

Ps(ν, γ, θ) =
√

3e3B sin θ

mec2
F(ν/νc)

F (ν/νc) ≡ ν

νc

∫ ∞

ν/νc

K5/3(y)dy (4.15)

νc ≡ 3

2
νs sin θ

This is the power integrated over the emission pattern. K5/3(y) is the modified
Bessel function of order 5/3. The dependence upon frequency is contained in
F(ν/νc), that is plotted in Fig. 4.4. This function peaks at ν ∼ 0.29νc, therefore
very close to what we have estimated before, in our very approximate treatment.
The low frequency part is well approximated by a power law of slope 1/3:

F(ν/νc) → 4π√
3Γ (1/3)

(
ν

2νc

)1/3

(ν � νc) (4.16)

At ν 	 νc the function decays exponentially, and can be approximated by:

F(ν/νc) →
(

π

2

)1/2(
ν

νc

)1/2

e−ν/νc (ν 	 νc) (4.17)
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Fig. 4.4 Top panel: The
function F(ν/νc) describing
the synchrotron spectrum
emitted by the single electron.
Bottom panel: F(ν/νc) is
compared with some
approximating formulae, as
labeled. We have defined
x ≡ ν/νc

Another approximation valid for all frequency, but overestimating F around the
peak, is:

F(ν/νc) ∼ 4π√
3Γ (1/3)

(
ν

2νc

)1/3

e−ν/νc (4.18)

4.3.3 Limits of Validity

One limit can be obtained by requiring that, during one orbit, the emitted energy is
much smaller than the electron energy. If not, the orbit is modified, and our calcu-
lations are no more valid. For non-relativistic electrons this translates in demanding
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that

hνL < mec
2 → B <

2πm2
ec

3

he
≡ Bc (4.19)

where Bc ∼ 4.4 × 1013 Gauss is the critical magnetic field, around and above which
quantum effects appears (i.e. quantized orbits, Landau levels and so on).

For relativistic particles we demand that the energy emitted during one orbit does
not exceed the energy of the particle.

Ps
2πrL

βc
< γmec

2 → B <
2e/σT

γ 2 sin3 θ
∼ 1.4 × 1015

γ 2 sin3 θ
Gauss (4.20)

Therefore for large γ we reach the validity limit even if the magnetic field is sub-
critical.

For very small pitch angles beware that the spectrum is not described by F(ν/νc),
but consists of a blue-shifted cyclotron line. This is because, in the gyroframe, the
particle is sub-relativistic, and so it emits only one (or very few) harmonics, that the
observer sees blueshifted.

4.3.4 From Cyclotron to Synchrotron Emission

A look at Fig. 4.5 helps to understand the difference between cyclotron and syn-
chrotron emission. When the particle is very sub-relativistic, the observed electric
field is sinusoidal in time. Correspondingly, the Fourier transform of E(t) gives only
one frequency, the first harmonic. Increasing somewhat the velocity (say, β ∼ 0.01)
the emission pattern starts to be asymmetric (for light aberration) and as a conse-
quence E(t) must be described by more than just one sinusoid, and higher order
harmonics appear. In these cases the ratio of the power contained in successive har-
monics goes as β2.

Finally, for relativistic (i.e. γ 	 1) particles, the pattern is so asymmetric that
the observers sees only spikes of electric field. They repeat themselves with the
gyration period, but all the power is concentrated into �tA. To reproduce E(t) in
this case with sinusoids requires a large number of them, with frequencies going
at least up to 1/�tA. In this case the harmonics are many, guaranteeing that the
spectrum becomes continuous with any reasonable line broadening effect, and the
power is concentrated at high frequencies.

4.4 Emission from Many Electrons

Again, this problem is treated in several text books, so we repeat the basic results
using some approximations, tricks and shortcuts.



4.4 Emission from Many Electrons 55

Fig. 4.5 From cyclo to synchro: If the emitting particle has a very small velocity, the observer sees
a sinusoidal (in time) electric field E(t). Increasing the velocity the pattern becomes asymmetric,
and the second harmonic appears. For 0 < β � 1 the power in the second harmonic is a factor
β2 less than the power in the first. For relativistic particles, the pattern becomes strongly beamed,
the emission is concentrated in the time �tA. As a consequence the Fourier transformation of
E(t) must contain many harmonics, and the power is concentrated in the harmonics of frequen-
cies ν ∼ 1/�tA. Broadening of the harmonics due to several effects ensures that the spectrum in
this case becomes continuous. Note that the fundamental harmonic becomes smaller increasing γ

(since νB ∝ 1/γ )

The queen of the particle energy distributions in high energy astrophysics is the
power law distribution:

N(γ ) = Kγ −p = N(E)
dE

dγ
; γmin < γ < γmax (4.21)

Now, assuming that the distribution of pitch angles is the same at low and high γ ,
we want to obtain the synchrotron emissivity produced by these particles. Beware
that the emissivity is the power per unit solid angle produced within 1 cm3. The
specific emissivity is also per unit of frequency. So, if Eq. 4.21 represents a density,
we should integrate over γ the power produced by the single electron (of a given γ )
times N(γ ), and divide all it by 4π , if the emission is isotropic:

js(ν, θ) = 1

4π

∫ γmax

γmin

N(γ )P (γ, ν, θ)dγ (4.22)

Doing the integral one easily finds that, in an appropriate range of frequencies:

js(ν, θ) ∝ KB(p+1)/2ν−(p−1)/2 (4.23)
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The important thing is that a power law electron distribution produces a power law
spectrum, and the two spectral indices are related. We traditionally call α the spectral
index of the radiation, namely js ∝ ν−α . We then have

α = p − 1

2
(4.24)

This result is so important that it is worth to try to derive it in a way as simple as
possible, even without doing the integral of Eq. 4.22. We can in fact use the fact that
the synchrotron spectrum emitted by the single particle is peaked. We can then say,
without being badly wrong, that all the power is emitted at the typical synchrotron
frequency:

νs = γ 2νL; νL ≡ eB

2πmec
(4.25)

In other words, there is a tight correspondence between the energy of the electron
and the frequency it emits. To simplify further, let us assume that the pitch angle is
90°. The emissivity at a given frequency, within an interval dν, is then the result of
the emission of electrons having the appropriate energy γ , within the interval dγ

js(ν)dν = 1

4π
PsN(γ )dγ ; γ =

(
ν

νL

)1/2

; dγ

dν
= ν−1/2

2ν
1/2
L

(4.26)

we then have

js(ν) ∝ B2γ 2Kγ −p dγ

dν

∝ B2K

(
ν

νL

)(2−p)/2
ν−1/2

ν
1/2
L

∝ KB(p+1)/2ν−(p−1)/2 (4.27)

where we have used νL ∝ B .
The synchrotron flux received from a homogeneous and thin source of volume

V ∝ R3, at a distance dL, is

Fs(ν) = 4πjs(ν)
V

4πd2
L

∝ R3

d2
L

KB1+αν−α

∝ θ2
s RKB1+αν−α (4.28)

where θs is the angular radius of the source (not the pitch angle!). Observing the
source at two different frequencies allows to determine α, hence the slope of the
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particle energy distribution. Furthermore, if we know the distance and R, the nor-
malization depends on the particle density and the magnetic field: two unknowns
and only one equation. We need another relation to close the system. As we will see
in the following, this is provided by the self-absorbed flux.

4.5 Synchrotron Absorption: Photons

All emission processes have their absorption counterpart, and the synchrotron emis-
sion is no exception. What makes synchrotron special is really the fact that it is
done by relativistic particles, and they are almost never distributed in energy as a
Maxwellian. If they were, we could use the well known fact that the ratio between
the emissivity and the absorption coefficient is equal to the black body (Kirchoff
law) and then we could easily find the absorption coefficient. But in the case of a
non-thermal particle distribution we cannot do that. Instead we are obliged to go
back to more fundamental relations, the one between the A and B Einstein coeffi-
cients relating spontaneous and stimulated emission and “true” absorption (by the
way, recall that the absorption coefficient is what remains subtracting stimulated
emission from “true” absorption). But we once again will use some tricks, in order
to be as simple as possible. These are the steps:

1. The first trick is to think to our power law energy distribution as a superposition
of Maxwellians, of different temperatures. So, we will relate the energy γmec

2

of a given electron to the energy kT of a Maxwellian.
2. We have already seen that there is a tight relation between the emitted frequency

and γ . Since the emission and absorption processes are related, we will assume
that a particular frequency ν is preferentially absorbed by those electrons that
can emit it.

3. As a consequence, we can associate our “fake” temperature to the frequency:

kT ∼ γmec
2 ∼ mec

2
(

ν

νL

)1/2

(4.29)

4. For an absorbed source the brightness temperature Tb, defined by

I (ν) ≡ 2kTb

ν2

c2
(4.30)

must be equal to the kinetic “temperature” of the electrons, and so

I (ν) ≡ 2kT
ν2

c2
∼ 2meν

2
(

ν

νL

)1/2

∝ ν5/2

B1/2
(4.31)
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These are the right dependencies. Note that the spectrum is ∝ν5/2, not ν2, and this
is the consequence of having “different temperatures”. Note also that the particle
density disappeared: if you think about it is natural: the more electrons you have,
the more you emit, but the more you absorb. Finally, even the slope of the par-
ticle distribution is not important, it controls (up to a factor of order unity) only
the normalization of I (ν) (our ultra-simple derivation cannot account for it, see
the Appendix).

The above is valid as long as we can associate a specific γ to any ν. This is
not always the case. Think for instance to a cut-off distribution, with γmin 	 1.
In this case the electrons with γmin are the most efficient emitters and absorbers
of all photons with ν < νmin ≡ γ 2

minνL. So in this case we should not associate a
different temperature when dealing with different ν < νmin. But if do not change T ,
we recover a self-absorbed intensity I (ν) ∝ ν2 (i.e. Raleigh–Jeans like).

Now, going from the intensity to the flux, we must integrate I (ν) over the angular
dimension of the source (i.e. θs ), obtaining

F(ν) ∝ θ2
s

ν5/2

B1/2
(4.32)

if we could observe a self-absorbed source, of known angular size, we could then
derive its magnetic field even without knowing its distance (apart from k-corrections:
here all frequencies are in the rest frame of the source, therefore ν = (1 + z)νobs).

4.5.1 From Thick to Thin

To describe the transition from the self-absorbed to the thin regime we have to write
the radiation transfer equation. The easiest one is for a slab. Calling αν the specific
absorption coefficient [cm−1] we have

I (ν) = j (ν)

αν

(
1 − e−τν

); τν ≡ Rαν (4.33)

it is instructive to write Eq. 4.33 in the form:

I (ν) = j (ν)R
1 − e−τν

τν

(4.34)

because in this way it is evident that when τν 	 1 (self-absorbed regime), we simply
have

I (ν) = j (ν)R

τν

= j (ν)

αν

; τν 	 1 (4.35)

One can interpret it saying that the intensity is coming from electrons lying in a shell
within R/τν from the surface.
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Fig. 4.6 The synchrotron
spectrum from a partially
self-absorbed source.
Observations of the
self-absorbed part could
determine B . Observations of
the thin part can then
determine K and the electron
slope p

Since we have already obtained I (ν) ∝ ν5/2B−1/2 in the absorbed regime, we
can derive the dependencies of the absorption coefficient:

αν = j (ν)

I (ν)
∝ KB(p+1)/2ν−(p−1)/2

ν5/2B−1/2
= KB(p+2)/2ν−(p+4)/2 (4.36)

Note the rather strong dependence upon frequency: at large frequencies, absorption
is small.

The obvious division between the thick and thin regime is when τν = 1. We call
self-absorption frequency, νt , the frequency when this occurs. We then have:

τνt = Rανt = 1 → νt ∝ [
RKB(p+2)/2]2/(p+4) (4.37)

The self-absorption frequency is a crucial quantity for studying synchrotron sources:
part of the reason is that it can be thought to belong to both regimes (thin and thick),
the other reason is that the synchrotron spectrum peaks very close to νt (see Fig. 4.6)
even if not exactly at νt (see the Appendix).

4.6 Synchrotron Absorption: Electrons

In the previous section we have considered what happens to the emitted spectrum
when photons are emitted and absorbed. This is described by the absorption co-
efficient. But now imagine to be an electron, that emits and absorbs synchrotron
photons. You would probably be interested if your budget is positive or negative,
that is, if you are loosing or gaining energy. This is most efficiently described by
a cross section, that tells you the probability to absorb a photon. Surprisingly, the
synchrotron absorption cross section has been derived relatively recently [1], and its
expression is:

σs(ν, γ, θ) = 16π2

3
√

3

e

B

1

γ 5 sin θ
K5/3

(
ν

νc sin θ

)
(4.38)
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Fig. 4.7 The synchrotron
absorption cross section as a
function of ν/νL for different
values of γ , as labeled,
assuming a pitch angle of
θ = 90° and a magnetic field
of 1 Gauss

For frequencies ν � νc this expression can be approximated by:

σs(ν, γ, θ) = 8π2(3 sin θ)2/3Γ (5/3)

3
√

3

e

B

(
ν

νL/γ

)−5/3

; ν � νc (4.39)

Note these features:

• At the fundamental frequency νL/γ , the cross section does not depend on γ .
• The dimensions are given by e/B: this factor is proportional to the product of

the classical electron radius and the Larmor wavelength (or radius). Imagine an
electron with 90° pitch angle, and to see its orbit from the side: you would see
a rectangle of base rL and height r0. The area of this rectangle is of the order of
e/B . At low frequencies, σs can be orders of magnitudes larger than the Thomson
scattering cross section.

• There is no explicit dependence on the particle mass. However, protons have
much smaller νL, and the dependence on mass is hidden there. Nevertheless, elec-
trons and protons have the same cross section (of order e/B) at their respective
fundamental frequencies.

Figure 4.7 shows σs as a function of ν/νL for different γ . The thing it should be
noticed is that this cross section is really large. Can we make some useful use of it?
Well, there are at least two issues, one concerning energy, and the other concerning
momentum.

First, electrons emitting and absorbing synchrotron photons do so with a large
efficiency. They can talk each other by exchanging photons. Therefore, even if they
are distributed as a power law in energy at the beginning, they will try to form a
Maxwellian. They will form it, as long as other competing processes are not im-
portant, such as inverse Compton scatterings. The formation of the Maxwellian will
interest only the low energy part of the electron distribution, where absorption is
important. Note that this thermalization process works exactly when Coulomb colli-
sions fail: they are inefficient at low density and high temperature, while synchrotron
absorption can work for relativistic electrons even if they are not very dense.

The second issue concerns exchange of momentum between photons and elec-
trons. Suppose that a magnetized region with relativistic electrons is illuminated by
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low frequency radiation by another source, located aside. The electrons will effi-
ciently absorb this radiation, and thus its momentum. The magnetized region will
then accelerate.

Appendix: Useful Formulae

In this section we collect several useful formulae concerning the synchrotron emis-
sion. When possible, we give also simplified analytical expressions. We will often
consider that the emitting electrons have a distribution in energy which is a power
law between some limits γ1 and γ2. Electrons are assumed to be isotropically dis-
tributed in the comoving frame of the emitting source. Their density is

N(γ ) = Kγ −p; γ1 < γ < γ2 (4.40)

The Larmor frequency is defined as:

νL ≡ eB

2πmec
(4.41)

A.1 Emissivity

The synchrotron emissivity js(ν, θ) [erg cm−3 s−1 sterad−1] is

js(ν, θ) ≡ 1

4π

∫ γ2

γ1

N(γ )Ps(ν, γ, θ)dγ (4.42)

where Ps(ν, γ, θ) is the power emitted at the frequency ν (integrated over all di-
rections) by the single electron of energy γmec

2 and pitch angle θ . For electrons
making the same pitch angle θ with the magnetic field, the emissivity is

js(ν, θ) = 3σTcKUB

8π2νL

(
ν

νL

)− p−1
2

(sin θ)
p+1

2 3
p
2
Γ (

3p−1
12 )Γ (

3p+19
12 )

p + 1
(4.43)

between ν1 	 γ 2
1 νL and ν2 � γ 2

2 νL. If the distribution of pitch angles is isotropic,

we must average the (sin θ)
p+1

2 term, obtaining

〈
(sin θ)

p+1
2

〉 =
∫ π

2

0
(sin θ)

p+1
2 sin θdθ =

√
π

2

Γ (
p+5

4 )

Γ (
p+7

4 )
(4.44)

Therefore the pitch angle averaged synchrotron emissivity is

js(ν) = 3σTcKUB

16π
√

πνL

(
ν

νL

)− p−1
2

fj (p) (4.45)
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The function fj (p) includes all the products of the Γ -functions:

fj (p) = 3
p
2

p + 1

Γ (
3p−1

12 )Γ (
3p+19

12 )Γ (
p+5

4 )

Γ (
p+7

4 )

∼ 3
p
2

(
2.25

p2.2
+ 0.105

)
(4.46)

where the simplified fitting function is accurate at the per cent level.

A.2 Absorption Coefficient

The absorption coefficient αν(θ) [cm−1] is defined as:

αν(θ) ≡ 1

8πmeν2

∫ γ2

γ1

N(γ )

γ 2

d

dγ

[
γ 2P(ν, θ)

]
dγ (4.47)

Written in this way, the above formula is valid even when the electron distribution
is truncated. For our power law electron distribution αν(θ) becomes:

αν(θ) ≡ 1

8πmeν2

∫ γ2

γ1

N(γ )

γ 2

d

dγ

[
γ 2P(ν, θ)

]
dγ (4.48)

Above ν = γ 2
1 νL, we have:

αν(θ) = e2K

4mec2
(νL sin θ)

p+2
2 ν− p+4

2 3
p+1

2 Γ

(
3p + 22

12

)
Γ

(
3p + 2

12

)
(4.49)

Averaging over the pitch angles we have:

〈
(sin θ)

p+2
2

〉 =
∫ π

2

0
(sin θ)

p+2
2 sin θdθ =

√
π

2

Γ (
p+6

4 )

Γ (
p+8

4 )
(4.50)

resulting in a pitch angle averaged absorption coefficient:

αν =
√

πe2K

8mec
ν

p+2
2

L ν− p+4
2 fα(p) (4.51)

where the function fα(p) is:

fα(p) = 3
p+1

2
Γ (

3p+22
12 )Γ (

3p+2
12 )Γ (

p+6
4 )

Γ (
p+8

4 )

∼ 3
p+1

2

(
1.8

p0.7
+ p2

40

)
(4.52)

The simple fitting function is accurate at the per cent level.
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A.3 Specific Intensity

Simple radiative transfer allows to calculate the specific intensity:

I (ν) = js(ν)

αν

(
1 − e−τν

)
(4.53)

where the absorption optical depth τν ≡ ανR and R is the size of the emitting region.
When τν 	 1, the exponential term vanishes, and the intensity is simply the ratio
between the emissivity and the absorption coefficient. This is the self-absorbed, or
thick, regime. In this case, since both js(ν) and αν depends linearly upon K , the
resulting self-absorbed intensity does not depend on the normalization of the particle
density K :

I (ν) = 2me√
3ν

1/2
L

fI (p)
(
1 − e−τν

)
(4.54)

we can thus see that the slope of the self-absorbed intensity does not depend on p.
Its normalization, however, does (albeit weakly) depend on p through the function
fI (p), which in the case of averaging over an isotropic pitch angle distribution is
given by:

fI (p) = 1

p + 1
= Γ (

3p−1
12 )Γ (

3p+19
12 )Γ (

p+5
4 )Γ (

p+8
4 )

Γ (
3p+22

12 )Γ (
3p+2

12 )Γ (
p+7

4 )Γ (
p+6

4 )

∼ 5

4p4/3
(4.55)

where again the simple fitting function is accurate at the level of 1 per cent.

A.4 Self-absorption Frequency

The self-absorption frequency νt is defined by τνt = 1:

νt = νL

[√
πe2RK

8mecνL

fα(p)

] 4
p+4 = νL

[
π

√
π

4

eRK

B
fα(p)

] 2
p+4

(4.56)

Note that the term in parenthesis is dimensionless, and since RK has units of the
inverse of a surface, then e/B has the dimension of a surface. In fact we have al-
ready discussed that this is the synchrotron absorption cross section of a relativistic
electron of energy γmec

2 absorbing photons at the fundamental frequency νL/γ .
The random Lorentz factor γt of the electrons absorbing (and emitting) photons

with frequency νt is γt ∼ [3νt/(4νL)]1/2.
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A.5 Synchrotron Peak

In an F(ν) plot, the synchrotron spectrum peaks close to νt, at a frequency νs,p

given by solving

dI (ν)

dν
= 0 → d

dν

[
ν5/2(1 − e−τν

)] = 0 (4.57)

which is equivalent to solve the equation:

exp(τνs,p ) − p + 4

5
τνs,p − 1 = 0 (4.58)

whose solution can be approximated by

τνs,p ∼ 2

5
p1/3 lnp (4.59)
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Chapter 5
Compton Scattering

5.1 Introduction

The simplest interaction between photons and free electrons is scattering. When the
energy of the incoming photons (as seen in the comoving frame of the electron) is
small with respect to the electron rest mass-energy, the process is called Thomson
scattering, which can be described in terms of classical electro-dynamics. As the
energy of the incoming photons increases and becomes comparable or greater than
mec

2, a quantum treatment is necessary (Klein–Nishina regime).

5.2 The Thomson Cross Section

Assume an electron at rest, and an electromagnetic wave of frequency ν � mec
2/h.

Assume also that the incoming wave is completely linearly polarized. In order to
neglect the magnetic force (e/c)(v × B) we must also require that the oscillation
velocity v � c. This in turn implies that the incoming wave has a sufficiently low
amplitude. The electron starts to oscillate in response to the varying electric force
eE, and the average square acceleration during one cycle of duration T = 1/ν is

〈
a2〉 = 1

T

∫ T

0

e2E2
0

m2
e

sin2(2πνt)dt = e2E2
0

2m2
e

(5.1)

The emitted power per unit solid angle is given by the Larmor formula dP/dΩ =
e2a2 sin2 Θ/(4πc3) where Θ is the angle between the acceleration vector and the
propagation vector of the emitted radiation. Please note that Θ is not the scattering
angle, which is instead the angle between the incoming and the scattered wave (or
photon). We then have

dPe

dΩ
= e4E2

0

8πm2
ec

3
sin2 Θ (5.2)
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The scattered radiation is completely linearly polarized in the plane defined by the
incident polarization vector and the scattering direction. The flux of the incoming
wave is Si = cE2

0/(8π). The differential cross section of the process is then
(

dσ

dΩ

)
pol

= dPe/dΩ

Si

= r2
0 sin2 Θ (5.3)

where r0 ≡ e2/(mec
2) is the classic electron radius, r0 = 2.82 × 10−13 cm. We

see that the scattered pattern of a completely polarized incoming wave is a torus,
with axis along the acceleration direction. The total cross section can be derived in
a similar way, but considering the Larmor formula integrated over the solid angle
[P = 2e2a2/(3c3)]. In this way the total cross section is

σpol = Pe

Si

= 8π

3
r2

0 (5.4)

Note that the classical electron radius can also be derived by equating the energy of
the associated electric field to the electron rest mass-energy:

mec
2 =

∫ ∞

ao

E2

8π
4πr2dr =

∫ ∞

ao

e2

2r2
dr → a0 = 1

2

e2

mec2
(5.5)

Why is a0 slightly different from r0? Because there is an intrinsic uncertainty related
to the distribution of the charge within (or throughout the surface of) the electron.
See the discussion in Vol. 2, Chap. 28.3 of “The Feynman Lectures on Physics”,
about the fascinating idea that the mass of the electron is all electromagnetic.

5.2.1 Why the Peanut Shape?

The scattering of a completely unpolarized incoming wave can be derived by as-
suming that the incoming radiation is the sum of two orthogonal completely lin-
early polarized waves, and then summing the associated scattering patterns. Since
we have the freedom to chose the orientations of the two polarization planes, it is
convenient to chose one of these planes as the one defined by the incident and scat-
tered directions, and the other one perpendicular to this plane. The scattering can be
then regarded as the sum of two independent scattering processes, one with emis-
sion angle Θ , the other with π/2. If we note that the scattering angle (i.e. the angle
between the scattered wave and the incident wave) is θ = π/2 − Θ , we have

(
dσ

dΩ

)
unpol

= 1

2

[(
dσ(Θ)

dΩ

)
pol

+
(

dσ(π/2)

dΩ

)
pol

]

= 1

2
r2

0

(
1 + sin2 Θ

)

= 1

2
r2

0

(
1 + cos2 θ

)
(5.6)
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Fig. 5.1 Photons are coming along the y-axis. The top panels shows the pattern of the scattered
radiation for photons completely linearly polarized along the z-axis (left) and along the x-axis
(right). The sum of the two torii corresponds to the pattern for unpolarized radiation (bottom panel).
This explains why we have a “peanut” shape, elongated along the velocity vector of the incoming
photons. Courtesy of Davide Lazzati

In this case we see that the cross section depends only on the scattering angle θ .
The pattern of the scattered radiation is then the superposition of two orthogonal
“tori” (one for each polarization direction), as illustrated in Fig. 5.1. When scat-
tering completely linearly polarized radiation, only one “torus” survives. Instead,
when scattering unpolarized radiation, some polarization is introduced, because of
the difference between the two “tori” patterns. Both terms of the RHS of Eq. 5.6 re-
fer to completely polarized scattered waves (but in two perpendicular planes). The
difference between these two terms is then associated to the introduced polarization,
which is then

Π = 1 − cos2 θ

1 + cos2 θ
(5.7)

The above discussion helps to understand why the scattering process introduces
some polarization, which is maximum (100 %) if the angle between the incoming
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and the scattered photons is 90◦, and zero for 0◦ and 180◦, where the two torii give
the same, but orthogonal, contributions.

The total cross section, integrated over the solid angle, is the same as that for po-
larized incident radiation (Eq. 5.4) since the electron at rest has no preferred defined
direction. This is the Thomson cross section:

σT =
∫ (

dσ

dΩ

)
unpol

dΩ = 2πr2
0

2

∫ (
1 + cos2 θ

)
d cos θ = 8π

3
r2

0

= 6.65 × 10−25 cm2 (5.8)

5.3 Direct Compton Scattering

In the previous section we considered the scattering process as an interaction be-
tween an electron and an electromagnetic wave. This required hν � mec

2. In the
general case the quantum nature of the radiation must be taken into account. We
consider then the scattering process as a collision between the electron and the pho-
ton, and apply the conservation of energy and momentum to derive the energy of the
scattered photon. It is convenient to measure energies in units of mec

2 and momenta
in units of mec.

Consider an electron at rest and an incoming photon of energy x0, which becomes
x1 after scattering. Let θ be the angle between the incoming and outgoing photon
directions. This defines the scattering plane. Momentum conservation dictates that
also the momentum vector of the electron, after the scattering, lies in the same plane.
Conservation of energy and conservation of momentum along the x and y axis gives:

x1 = x0

1 + x0(1 − cos θ)
(5.9)

Note that, for x0 	 1 and cos θ �= 1, x1 → (1 − cos θ)−1. In this case the scattered
photon carries information about the scattering angle, rather than about the initial
energy. As an example, for θ = π and x0 	 1, the final energy is x1 = 0.5 (corre-
sponding to 255 keV) independently of the exact value of the initial photon energy.
See Fig. 5.4. Note that for x0 � 1 the scattered energy x1 � x0, as assumed in the
classical Thomson scattering. The energy shift implied by Eq. 5.9 is due to the re-
coil of the electron originally at rest, and becomes significant only when x0 becomes
comparable with 1 (or more). When the energy of the incoming photon is compa-
rable to the electron rest mass, another quantum effect appears, namely the energy
dependence of the cross section.

5.4 The Klein–Nishina Cross Section

The Thomson cross section is the classical limit of the more general Klein–Nishina
cross section (here we use x as the initial photon energy, instead of x0, for simplic-
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ity):

dσKN

dΩ
= 3

16π
σT

(
x1

x

)2(
x

x1
+ x1

x
− sin2 θ

)
(5.10)

This is a compact form, but there appears dependent quantities, as sin θ is related to
x and x1. By inserting Eq. 5.9, we arrive to

dσKN

dΩ
= 3

16π

σT

[1 + x(1 − cos θ)]2

[
x(1 − cos θ) + 1

1 + x(1 − cos θ)
+ cos2 θ

]

(5.11)

In this form, only independent quantities appear (i.e. there is no x1). Note that the
cross section becomes smaller for increasing x and that it coincides with dσT/dΩ

for θ = 0 (for this angle x1 = x independently of x). This however corresponds to a
vanishingly small number of interactions, since dΩ → 0 for θ → 0.

Integrating Eq. 5.11 over the solid angle, we obtain the total Klein–Nishina cross
section:

σKN = 3

4
σT

{
1 + x

x3

[
2x(1 + x)

1 + 2x
− ln(1 + 2x)

]
+ 1

2x
ln(1 + 2x) − 1 + 3x

(1 + 2x)2

}

(5.12)

Asymptotic limits are:

σKN � σT

(
1 − 2x + 26x2

5
+ · · ·

)
; x � 1

σKN � 3

8

σT

x

[
ln(2x) + 1

2

]
; x 	 1

(5.13)

Figure 5.2 shows the total Klein–Nishina cross section as a function of the energy x

of the incoming photon, while Fig. 5.3 shows the behavior of the differential cross
section.

The direct Compton process implies a transfer of energy from the photons to the
electrons. It can then be thought as a heating mechanism. In the next subsection
we discuss the opposite process, called inverse Compton scattering, in which hot
electrons can transfer energy to low frequency photons.

We have so far neglected the momentum exchange between radiation and the
electron. One can see, even classically, that there must be a net force acting along
the direction of the wave if one considers the action of the magnetic field of the
wave. In fact the Lorentz force ev × B is always directed along the direction of the
wave (here v is the velocity along the E field). This explains the fact that light can
exert a pressure, even classically.
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Fig. 5.2 The total
Klein–Nishina cross section
as a function of energy. The
dashed line is the
approximation at high
energies as given in Eq. 5.13

Fig. 5.3 The differential
Klein–Nishina cross section
(in units of σT), for different
incoming photon energies.
Note how the scattering
becomes preferentially
forward as the energy of the
photon increases

5.4.1 Another Limit

We have mentioned that, in order for the magnetic Lorentz force to be negligible,
the electron must have a transverse (perpendicular to the incoming wave direction)
velocity �c. Considering a wave of frequency ω and electric field E = E0 sin(ωt),
this implies that:

v⊥
c

=
∫ T/2

0

eE0

cme

sin(ωt)dt = 2eE0

mecω
� 1 (5.14)

This means that the scattering process can be described by the Thomson cross sec-
tion if the wave have a sufficiently low amplitude and a not too small frequency (i.e.
for very small frequencies the electric field of the wave accelerates the electron for
a long time, and then to large velocities).
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Fig. 5.4 Scattered photons
energies as a function of the
scattering angle, for different
incoming photon energies.
Note that, for x 	 1 and for
large scattering angle, the
scattered photon energies
becomes x1 ∼ 1/2,
independent of the initial
photon energy x

5.4.2 Pause

Now pause, and ask if there are some ways to apply what we have done up to now
to real astrophysical objects.

• The Eddington luminosity is derived with the Thomson cross section, with the
thought that it describes the smallest probability of interaction between matter
and radiation. But the Klein–Nishina cross section can be even smaller, as long as
the source of radiation emits at high energy. What are the consequences? If you
have forgotten the definition of the Eddington luminosity, here it is:

LEdd = 4πGMmpc

σT
= 1.3 × 1038 M

M�
erg s−1 (5.15)

• In Nova Muscae, some years ago a (transient) annihilation line was detected,
together with another feature (line-like) at 200 keV. What can this feature be?

• It seems that high energy radiation can suffer less scattering and therefore can
propagate more freely through the universe. Is that true? Can you think to other
processes that can kill high energy photons in space?

• Suppose to have an astrophysical source of radiation very powerful above say—
100 MeV. Assume that at some distance there is a very efficient “reflector” (i.e.
free electrons) and that you can see the scattered radiation. Can you guess the
spectrum you receive? Does it contain some sort of “pile-up” or not? Will this
depend upon the scattering angle?
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Fig. 5.5 In the lab frame an electron is moving with velocity v. Its velocity makes an angle ψ

with an incoming photon of frequency ν. In the frame where the electron is at rest, the photon is
coming from the front, with frequency ν′, making an angle ψ ′ with the direction of the velocity

5.5 Inverse Compton Scattering

When the electron is not at rest, but has an energy greater that the typical photon
energy, there can be a transfer of energy from the electron to the photon. This pro-
cess is called inverse Compton to distinguish it from the direct Compton scattering,
in which the electron is at rest, and it is the photon to give part of its energy to the
electron.

We have two regimes, that are called the Thomson and the Klein–Nishina
regimes. The difference between them is the following: we go in the frame where
the electron is at rest, and in that frame we calculate the energy of the incoming
photon. If the latter is smaller than mec

2 we are in the Thomson regime. In this case
the recoil of the electron, even if it always exists, is small, and can be neglected. In
the opposite case (photon energies larger than mec

2), we are in the Klein–Nishina
one, and we cannot neglect the recoil. As we shall see, in both regimes the typical
photon gains energy, even if there will always be some arrangements of angles for
which the scattered photon looses part of its energy.

5.5.1 Thomson Regime

Perhaps, a better name should be “inverse Thomson” scattering, as will appear clear
shortly.

5.5.2 Typical Frequencies

In the frame K ′ comoving with the electron, the incoming photon energy is

x′ = xγ (1 − β cosψ) (5.16)

where ψ is the angle between the electron velocity and the photon direction (see
Fig. 5.5).

At first sight this is different from x′ = xδ derived in Chap. 3. But notice that
(i) in this case the angle ψ is measured in the lab frame; (ii) it is not the same angle
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going into the definition of δ (i.e. in δ we use the angle between the line of sight and
the velocity of the emitter, i.e. θ ′ = π −ψ ′). Going to the rest frame of the electrons
we should use (recalling Eq. 3.16 for the transformation of angles):

cosψ = β + cosψ ′

1 + β cosψ ′ (5.17)

Substituting this into Eq. 5.16 we have

x′ = x

γ (1 + β cosψ ′)
(5.18)

Finally, consider that cos θ ′ = cos(π − ψ ′) = − cosψ ′, validating x′ = xδ.
If x′ � 1, we are in the Thomson regime. In the rest frame of the electron the

scattered photon will have the same energy x′
1 as before the scattering, independent

of the scattering angle. Then

x′
1 = x′ (5.19)

This photon will be scattered at an angle ψ ′
1 with respect to the electron velocity.

The pattern of the scattered radiation will follow the pattern of the cross section
(i.e. a peanut). Think to the scattering in the comoving frame as a re-isotropization
process: even if the incoming photons are all coming from the same direction, after
the scattering they are distributed quasi-isotropically. Going back to K the observer
sees

x1 = x′
1γ

(
1 + β cosψ ′

1

)
(5.20)

Recalling again Eq. 3.16, for the transformation of angles:

cosψ ′
1 = cosψ1 − β

1 − β cosψ1
(5.21)

we arrive to the final formula:

x1 = x
1 − β cosψ

1 − β cosψ1
(5.22)

Now all quantities are calculated in the lab-frame.
Let us see the minimum and maximum energies. See Fig. 5.6. The maximum is

when ψ = π (head on collision), and when ψ1 = 0 (the photon is scattered along
the electron velocity vector). In these head-on collisions:

x1 = x
1 + β

1 − β
= γ 2(1 + β)2x → 4γ 2x; head-on (5.23)

where the last step is valid if γ 	 1. The other extreme is for ψ1 = π and ψ = 0.
In this case the incoming photon “comes from behind” and bounces back. In these
“tail-on” collisions:

x1 = x
1 − β

1 + β
= x

γ 2(1 + β)2
→ x

4γ 2
; tail-on (5.24)
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Fig. 5.6 Maximum and minimum scattered frequencies. The maximum occurs for head-on colli-
sions, the minimum for tail-on ones. These two frequencies are one the inverse of the other

where again the last step is valid if γ 	 1. Another typical angle is sinψ1 = 1/γ ,
corresponding to cosψ1 = β . This corresponds to the aperture angle of the beaming
cone. For this angle:

x1 = 1 − β cosψ

1 − β2
x = γ 2(1 − β cosψ)x; beaming cone (5.25)

which becomes x1 = x/(1 + β) for ψ = 0, x1 = γ 2x for ψ = π/2 and x1 = γ 2(1 +
β)x for ψ = π .

For an isotropic distribution of incident photons and for γ 	 1 the average pho-
ton energy after scattering is (see Eq. 5.47):

〈x1〉 = 4

3
γ 2x (5.26)

Total Loss Rate

We can simply calculate the rate of scatterings per electron considering all quantities
in the lab-frame. Let n(ε) be the density of photons of energy ε = hν, v the electron
velocity and ψ the angle between the electron velocity and the incoming photon.
For mono-directional photon distributions, we have:

dN

dt
=

∫
σTvreln(ε)dε (5.27)

vrel = c − v cosψ is the relative velocity between the electron and the incoming
photons. We then have

dN

dt
=

∫
σTc(1 − β cosψ)n(ε)dε (5.28)

Note that the rate of scatterings in the lab frame, when the electron and/or photon
are anisotropically distributed, can be described by an effective cross section σeff ≡∫

σT(1 − β cosψ)dΩ/4π . For photons and electrons moving in the same direction
the scattering rate (hence, the effective optical depth) can be greatly reduced.
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The power contained in the scattered radiation is then

dEγ

dt
= ε1dN

dt
= σTc

∫
(1 − β cosψ)2

1 − β cosψ1
εn(ε)dε (5.29)

Independently of the incoming photon angular distribution, the average value of
1 − β cosψ1 can be calculated recalling that, in the rest frame of the electron, the
scattering has a backward–forward symmetry, and therefore 〈cosψ ′

1〉 = π/2. The
average value of cosψ1 is then β , leading to 〈1 − β cosψ1〉 = 1/γ 2. We therefore
obtain

dEγ

dt
= σTcγ 2

∫
(1 − β cosψ)2εn(ε)dε (5.30)

If the incoming photons are isotropically distributed, we can average out (1 −
β cosψ)2 over the solid angle, obtaining 1 + β2/3. The power produced is then

dEγ

dt
= σTcγ 2

(
1 + β2

3

)
Ur (5.31)

where

Ur =
∫

εn(ε)dε (5.32)

is the energy density of the radiation before scattering. Equation 5.31 gives the
power contained in the scattered radiation. To calculate the energy loss rate of the
electron, we have to subtract the initial power of the radiation eventually scattered

Pc(γ ) ≡ dEe

dt
= dEγ

dt
− σTcUr = 4

3
σTcγ 2β2Ur (5.33)

A simple way to remember Eq. 5.33 is:

Pc(γ ) =
(

# of collisions

sec

)
(average phot. energy after scatt.)

=
(

σTc
Ur

〈hν〉
)(

4

3
〈hν〉γ 2

)
(5.34)

Note the similarity with the synchrotron energy loss. The two energy loss rates are
identical, once the radiation energy density is replaced by the magnetic energy den-
sity UB. Therefore, if relativistic electrons are in a region with some radiation and
magnetic energy densities, they will emit by both the synchrotron and the Inverse
Compton scattering processes. The ratio of the two luminosities will be

Lsyn

LIC
= Psyn

Pc
= UB

Ur
(5.35)

where we have set dEIC/dt = dEe/dt . This is true unless one of the two processes
is inhibited for some reason. For instance:
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Fig. 5.7 In the center of a semi-sphere (the “bowl”) we have relativistic electrons going down and
going up, all with the same γ . Since the seed photon distribution is anisotropic, so is the scattered
radiation and power. The losses of the electron going down are 7 times larger than those of the
electron going up (if γ 	 1). Since almost all the radiation is produced along the velocity vector
of the electrons, also the downward radiation is 7 times more powerful than the upward radiation

• At (relatively) low energies, electrons could emit and absorb synchrotron radia-
tion, so the synchrotron cooling is compensated by the heating due to the absorp-
tion process.

• At high energies, electrons could scatter in the Klein–Nishina regime: in this case,
since the cross section is smaller, they will do less scatterings, and cool less.

But let us go back to Eq. 5.30, that is the starting point when dealing with
anisotropic seed photon distributions. Think for instance to an accretion disk as the
producer of the seed photons for scattering, and some cloud of relativistic electrons
above the disk. If the cloud is not that distant, and it is small with respect to the disk
size, then this case is completely equal to the case of having a little cloud of rela-
tivistic electrons located at the center of a semi-sphere. That is, we have the “bowl”
case illustrated in Fig. 5.7. Just for fun, let us calculate the total power emitted by
an electron going “up” and by its brother (i.e. it has the same γ ) going down. Using
Eq. 5.30 we have:

Pdown

Pup
=

∫ 0
−1(1 − βμ)2dμ∫ 1
0 (1 − βμ)2dμ

= 1 + β + β2/3

1 − β + β2/3
→ 7 (5.36)

where μ ≡ cosψ and the last step assumes β → 1. Since almost all the radiation is
produced along the velocity vector of the electrons, also the downward radiation is
more powerful than the upward radiation (i.e. 7 times more powerful for γ 	 1).
What happens if the cloud of electrons is located at some height above the bowl?
Will the Pdown/Pup be more or less?

5.5.3 Cooling Time and Compactness

The cooling time due to the inverse Compton process is

tIC = E

dEe/dt
= 3γmec

2

4σTcγ 2β2Ur
∼ 3mec

2

4σTcγUr
; γ ε � mec

2 (5.37)
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This equation offers the opportunity to introduce an important quantity, namely the
compactness of an astrophysical source, that is essentially the luminosity L over the
size R ratio. Consider in fact how Ur and L are related:

Ur = L

4πR2c
(5.38)

Although this relation is almost universally used, there are subtleties. It is surely
valid if we measured Ur outside the source, at a distance R from its center. In this
case 4πR2c is simply the volume of the shell crossed by the source radiation in one
second. But if we are inside a homogeneous, spherical transparent source, a better
way to calculate Ur is to think to the average time needed to the typical photon to exit
the source. This is tesc = 3R/(4c). It is less than R/c because the typical photon is
not born at the center (there is more volume close to the surface). If V = (4π/3)R3

is the volume, we can write:

Ur = L

V
tesc = 3L

4πR3

3R

4c
= 9L

16πR2c
(5.39)

This is greater than Eq. 5.38 by a factor 9/4. Anyway, let us be conventional and
insert Eq. 5.38 in Eq. 5.37:

tIC = 3πmec
2R2

σTγL
→ tIC

R/c
= 3π

γ

mec
3R

σTL
≡ 3π

γ

1



(5.40)

where the dimensionless compactness 
 is defined as


 = σTL

mec3R
(5.41)

For 
 close or larger than unity, we have that even low energy electrons cool by the
Inverse Compton process in less than a light crossing time R/c.

There is another reason why 
 is important, related to the fact that it directly
measures the optical depth (hence the probability to occur) of the photon–photon
collisions that lead to the creation of electron–positron pairs. The compactness is
one of the most important physical parameters when studying high energy compact
sources (X-ray binaries, AGNs and Gamma Ray Bursts).

5.5.4 Single Particle Spectrum

As we did for the synchrotron spectrum, we will not repeat the exact derivation of
the single particle spectrum, but we try to explain why the typical frequency of the
scattered photon is a factor γ 2 larger than the frequency of the incoming photon.
Here are the steps to consider:
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1. Assume that the relativistic electron travels in a region where there is a radi-
ation energy density Ur made by photons which we will take, for simplicity,
monochromatic, therefore all having a dimensionless frequency x = hν/mec

2.
2. In the frame where the electron is at rest, half of the photons appear to come from

the front, within an angle 1/γ .
3. The typical frequency of these photons is x′ ∼ γ x (it is twice that for photons

coming exactly head on).
4. Assuming that we are in the Thomson regime means that (i) x′ < 1; (ii) the

cross section is the Thomson one; (iii) the frequency of the scattered photon
is the same of the incoming one, i.e. x′

1 = x′ ∼ γ x, and (iv) the pattern of the
scattered photons follows the angular dependence of the cross section, therefore
the “peanut”.

5. Independently of the initial photon direction, and therefore independently of the
frequencies seen by the electrons, all photons after scatterings are isotropized.
This means that all observers (at any angle ψ ′

1) in this frame see the same spec-
trum, and the same typical frequency. Half of the photons are in the semi-sphere
with ψ ′

1 ≤ π/2.
6. Now we go back to the lab-frame. Those photons that had ψ ′

1 ≤ π/2 now have
ψ1 ≤ 1/γ . Their typical frequency if another factor γ greater than what they had
in the rest frame, therefore

x1 ∼ γ 2x (5.42)

This is the typical Inverse Compton frequency.

The exact derivation can be found e.g. in [3] and [1]. We report here the final
result, valid for a monochromatic and isotropic seed photons distribution, character-
ized by a specific intensity

I (x)

x
= I0

x
δ(x − x0) (5.43)

Note that I (x)/x is the analog of the normal intensity, but it is associated with the
number of photons. If we have n electrons per cubic centimeter we have:

εIC(x1) = σTnI0(1 + β)

4γ 2β2x0
FIC(x1) (5.44)

The function FIC contains all the frequency dependence:

FIC(x1) = x1

x0

[
x1

x0
− 1

(1 + β)2γ 2

]
; 1

(1 + β)2γ 2
<

x1

x0
< 1

FIC(x1) = x1

x0

[
1 − x1

x0

1

(1 + β)2γ 2

]
; 1 <

x1

x0
< (1 + β)2γ 2

(5.45)

The first line corresponds to downscattering: the scattered photon has less energy
than the incoming one. Note that in this case FIC(x1) ∝ x2

1 . The second line corre-
sponds to upscattering: in this case FIC(x1) ∝ x1 except for frequencies close to the
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Fig. 5.8 Spectrum emitted by the Inverse Compton process by electrons of different γ (as labeled)
scattering an isotropic monochromatic radiation field of dimensionless frequency x0. The dashed
line corresponds to the spectrum emitted within the 1/γ beaming cone: it always contains the
75 % of the total power, for any γ . For x1 < x0 we have downscattering, i.e. the photons loose
energy in the process. Note also the power law segments arising when γ 	 1: FIC(x1) ∝ x2

1 for
the downscattering tail, and FIC(x1) ∝ x1 for the upscattering segment

maximum ones. The function FIC(x1) is shown in Fig. 5.8 for different values of γ .
The figure shows also the spectrum of the photons contained in the beaming cone
1/γ : the corresponding power is always 75 % of the total.

The average frequency of FIC(x1) is

〈x1〉 = 2γ 2x0; energy spectrum (5.46)

This is the average frequency of the energy spectrum. We sometimes want to know
the average energy of the photons, i.e. we have to calculate the average frequency of
the photon spectrum FIC(x1)/x1. This is:

〈x1〉 = 4

3
γ 2x0; photon spectrum (5.47)

5.6 Emission from Many Electrons

We have seen that the emission spectrum from a single particle is peaked, and the
typical frequency is boosted by a factor γ 2. This is equal to the synchrotron case.
Therefore we can derive the Inverse Compton emissivity as we did for the syn-
chrotron one. Again, assume a power-law energy distribution for the relativistic
electrons:

N(γ ) = Kγ −p = N(E)
dE

dγ
; γmin < γ < γmax (5.48)
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and assume that it describes an isotropic distribution of electrons. For simplicity, let
us assume that the seed photons are isotropic and monochromatic, with frequency ν0

(we now pass to real frequencies, since we are getting closer to the real world. . . ).
Since there is a strong link between the scattered frequency νc and the electron
energy that produced it, we can set:

νc = 4

3
γ 2ν0 → γ =

(
3νc

4ν0

)1/2

→
∣∣∣∣dγ

dν

∣∣∣∣ = ν
−1/2
c

2

(
3

4νo

)1/2

(5.49)

Now, repeating the argument we used for synchrotron emission, we can state
that the power lost by the electron of energy γmec

2 within mec
2dγ goes into

the radiation of frequency ν within dν. Since we will derive an emissivity (i.e.
erg cm−3 s−1 sterad−1 Hz−1) we must remember the 4π term (if the emission is
isotropic). We can set:

εc(νc)dνc = 1

4π
Pc(γ )N(γ )dγ (5.50)

This leads to:

εc(νc) = 1

4π

(4/3)α

2
σTcK

Ur

ν0

(
νc

ν0

)−α

(5.51)

Again, a power law, as in the case of synchrotron emission by a power law energy
distribution. Again the same link between α and p:

α = p − 1

2
(5.52)

Of course, this is not a coincidence: it is because both the Inverse Compton and the
synchrotron single electron spectra are peaked at a typical frequency that is a factor
γ 2 greater than the starting one.

Equation 5.51 becomes a little more clear if

• we express εc(νc) as a function of the photon energy hνc. Therefore εc(hνc) =
εc(νc)/h;

• we multiply and divide by the source radius R;
• we consider a proxy for the scattering optical depth of the relativistic electrons

setting τc ≡ σTKR.

Then we obtain:

εc(hνc) = 1

4π

(4/3)α

2

τc

R/c

Ur

hν0

(
νc

ν0

)−α

(5.53)

In this way: τc (for τc < 1) is the fraction of the seed photons Ur/hν0 undergo-
ing scattering in a time R/c, and νc/ν0 ∼ γ 2 is the average gain in energy of the
scattered photons.
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Fig. 5.9 The ν–νc plane. The
two diagonal lines delimit the
regions of the seed photons
that can be used to give a
given frequency νc

5.6.1 Non-monochromatic Seed Photons

It is time to consider the more realistic case in which the seed photons are not
monochromatic, but are distributed in frequency. This means that we have to in-
tegrate Eq. 5.51 over the incoming photon frequencies. For clarity, let us drop the
subscript 0 in ν0. We have

εc(νc) = 1

4π

(4/3)α

2

τc

R/c
ν−α

c

∫ νmax

νmin

Ur(ν)

ν
ναdν (5.54)

where Ur(ν) [erg cm−3 Hz−1] is the specific radiation energy density at the fre-
quency ν. The only difficulty of this integral is to find the correct limit of the inte-
gration, that, in general, depend on νc. Note also another interesting thing. We have
just derived that if the same electron population produces Inverse Compton and syn-
chrotron emission, than the slopes of the two spectra are the same. Therefore, when
Ur(ν) is made by synchrotron photons, then Ur(ν) ∝ ν−α . The result of the integral,
in this case, will be ln(νmax/νmin).

Figure 5.9 helps to understand what are the right νmax and νmin to use. On the y-
axis we have the frequencies of the seed photon distribution, which extend between
ν1 and ν2. On the x-axis we have the scattered frequencies, which extend between
νc,1 = (4/3)γ 2

minν1 and νc,4 = (4/3)γ 2
maxν1. The diagonal lines are the functions

ν = 3νc

4γ 2
min

; ν = 3νc

4γ 2
max

(5.55)

that tell us what are the appropriate ν that can give νc once we change γ .
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There are three zones:

1. In zone (1), between νc,1 and νc,2 = (4/3)γ 2
minν2 the appropriate limits of inte-

gration are:

νmin = ν1; νmax = 3νc

4γ 2
min

(5.56)

2. In zone (2), between νc,2 and νc,3 = (4/3)γ 2
maxν1 the limits are:

νmin = ν1; νmax = ν2 (5.57)

3. In zone (3), between νc,3 and νc,4 = (4/3)γ 2
maxν2 the limits are:

νmin = 3νc

4γ 2
max

; νmax = ν2 (5.58)

We see that only in zone (2) the limits of integration coincide with the extension
in frequency of the seed photon distribution, and are therefore constant. Therefore
εc(νc) will be a power law of slope α only in the corresponding frequency limits.
Note also that for a broad range in [ν1;ν2] or a narrow range in [γmin;γmax] we do
not have a power law, since there is no νc for which the limits of integrations are
both constants.

5.7 Thermal Comptonization

With this term we mean the process of multiple scattering of a photon due to a
thermal or quasi-thermal distribution of electrons. By quasi-thermal we mean a
particle distribution that is peaked, even if it is not a perfect Maxwellian. Since the
resulting spectrum, by definition, is due to the superposition of many spectra, each
corresponding to a single scattering, the details of the particle distribution will be
lost in the final spectrum, as long as the distribution is peaked. The “bible” for an
extensive discussion about this process is [2].

There is one fundamental parameter measuring the importance of the Inverse
Compton process in general, and of multiple scatterings in particular: the Comp-
tonization parameter, usually denoted with the letter y. Its definition is:

y = [average # of scatt.] × [average fractional energy gain for scatt.] (5.59)

If y > 1 the Comptonization process is important, because the Comptonized spec-
trum has more energy than the spectrum of the seed photons.
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5.7.1 Average Number of Scatterings

This can be calculated thinking that the photon, before leaving the source, experi-
ence a sort of random walk inside the source. Let us call

τT = σTnR (5.60)

the Thomson scattering optical depth, where n is the electron density and R the size
of the source. When τT < 1 most of the photons leave the source directly, without
any scattering. When τT > 1 then the mean free path is d = R/τT and the photon
will experience, on average, τ 2

T scatterings before leaving the source. Therefore the
total path traveled by the photon, from the time of its birth to the time it leaves the
source is:

c�t = τ 2
T

R

τT
= τTR (5.61)

and �t is the corresponding elapsed time.

5.7.2 Average Gain per Scattering

Relativistic Case

If the scattering electrons are relativistic, we have already seen that the photon en-
ergy is amplified by the factor (4/3)γ 2 (on average). Therefore the problem is to
find what is 〈γ 2〉 in the case of a relativistic Maxwellian, that has the form

N(γ ) ∝ γ 2e−γ /Θ ; Θ ≡ kT

mec2
(5.62)

Setting x0 = hν0/(mec
2) we have that the average energy of the photon of initial

frequency x0 after a single scattering with electrons belonging to this Maxwellian
is:

〈x1〉 = 4

3

〈
γ 2〉x0 = 4

3
x0

∫ ∞
1 γ 2γ 2e−γ /Θdγ∫ ∞

1 γ 2e−γ /Θdγ

= 4

3
x0Θ

2 Γ (5)

Γ (3)

= 4

3
x0Θ

2 4!
2! = 16Θ2x0 (5.63)

Non-relativistic Case

In this case the average gain is proportional to the electron energy, not to its square.
The derivation is not immediate, but we must use a trick. Also, we have to account
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that in any Maxwellian, but especially when the temperature is not large, there will
be electrons that have less energy than the incoming photons. In this case it is the
photon that gives energy to the electron: correspondingly, the scattered photon will
have less energy than the incoming one. Averaging out over a Maxwellian distribu-
tion, we will have:

�x

x
= x1 − x0

x0
= αΘ − x (5.64)

Where αΘ is what the photon gains and the −x term corresponds to the downscat-
tering of the photon (i.e. direct Compton). We do not know yet the value for the
constant α. To determine it we use the following argument. We know (from general
and robust arguments) what happens when photons and electrons are in equilibrium
under the only process of scattering, and neglecting absorption (i.e. when the num-
ber of photon is conserved). What happens is that the photons follow the so-called
Wien distribution given by:

FW(x) ∝ x3e−x/Θ → NW(x) = FW(x)

x
∝ x2e−x/Θ (5.65)

where F correspond to the radiation spectrum, N to the photon spectrum, and Θ is
the dimensionless electron temperature. When a Wien distribution is established we
must have 〈�x〉 = 0, since we are at equilibrium, So we require that, on average,
gains equal losses:

〈�x〉 = 0 → αΘ〈x〉 − 〈
x2〉 = 0 (5.66)

Calculating 〈x〉 and 〈x2〉 for a photon Wien distribution, we have:

〈x〉 =
∫ ∞

0 x3e−x/Θdx∫ ∞
0 x2e−x/Θdx

= Γ (4)

Γ (3)
Θ = 3!

2!Θ = 3Θ

〈
x2

〉 =
∫ ∞

0 x4e−x/Θdx∫ ∞
0 x2e−x/Θdx

= Γ (5)

Γ (3)
Θ2 = 4!

2!Θ
2 = 12Θ2

(5.67)

This implies that α = 4 not only at equilibrium, but always, and we finally have

�x

x
= 4Θ − x (5.68)

Combining the relativistic and the non-relativistic cases, we have an expression valid
for all temperatures:

�x

x
= 16Θ2 + 4Θ − x (5.69)

going back to the y parameter we can write:

y = max
(
τT, τ 2

T

) × [
16Θ2 + 4Θ − x

]
(5.70)
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Going to the differential form, and neglecting downscattering, we have

dx

x
= [

16Θ2 + 4Θ
]
dK → xf = x0e

(16Θ2+4Θ)K → xf = x0e
y (5.71)

where now K is the number of scatterings. If we subtract the initial photon energy,
and consider that the above equation is valid for all the x0 of the initial seed photon
distribution, of luminosity L0, we have

Lf − L0

L0
= ey − 1 (5.72)

Then the importance of y is self evident, and also the fact that it marks the impor-
tance of the Comptonization process when it is larger than 1.

5.7.3 Comptonization Spectra: Basics

We will illustrate why even a thermal (Maxwellian) distribution of electrons can
produce a power law spectrum. The basic reason is that the total produced spectrum
is the superposition of many orders of Compton scattering spectra: when they are
not too much separated in frequency (i.e. for not too large temperatures) the sum is
a smooth power law. We can distinguish 4 regimes, according to the values of τT
and y. As usual, we set x ≡ hν/(mec

2) and Θ ≡ kT /(mec
2).

The Case τT < 1

Neglect downscattering for simplicity. The fractional energy gain is �x/x =
16Θ2 + 4Θ , so the amplification A of the photon frequency at each scattering is

A ≡ x1

x
= 16Θ2 + 4Θ + 1 ∼ y

τT
(5.73)

We can then construct Table 5.1.
A look to Fig. 5.10 should convince you that the sum of all the scattering or-

ders gives a power law, and should also make clear how to find the spectral slope.
Remember that we are in a log–log plot, so the spectral index is simply �y/�x.
We can find it considering two successive scattering orders: the typical (logarithm
of) frequency is enhanced by logA, and the fraction of photons doing the scatter-
ing is − log τT. Remember also that we use F(x) ∝ x−α as the definition of energy
spectral index.

Therefore

α = − log τT

logA
∼ − log τT

logy − log τT
(5.74)
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Table 5.1 When τT < 1, a
fraction e−τT of the seed
photons escape without doing
any scattering, and a fraction
1 − e−τT → τ undergoes at
least one scattering. We can
then repeat these fractions for
all scattering orders. Even if a
tiny fraction of photons does
several scatterings, they can
carry a lot of energy

# scatt. Fraction of escaping photons 〈x〉

0 e−τT → 1 − τT x0

1 ∼τT x0A

2 ∼τ 2
T x0A

2

3 ∼τ 3
T x0A

3

4 ∼τ 4
T x0A

4

.

.

.
.
.
.

.

.

.

n ∼τn
T x0A

n

Fig. 5.10 Multiple Compton
scatterings when τT < 1. A
fraction τT of the photons of
the previous scattering order
undergoes another scattering,
and amplifying the frequency
by the gain factor A, until the
typical photon frequency
equals the electron
temperature Θ . Then further
scatterings leave the photon
frequency unchanged

When y ∼ 1, its logarithm is close to zero, and we have α ∼ 1. When y > 1, then
α < 1 (i.e. flat, or hard), and vice-versa, when y < 1, then its logarithm will be
negative, as the logarithm of τT, and α > 1 (i.e. steep, or soft).

Attention! when τT � 1 and A is large (i.e. big frequency jumps between one
scattering and the next), then the superposition of all scattering orders (by the way,
there are fewer, in this case) will not guarantee a perfect power-law. In the total
spectrum we can see the “bumps” corresponding to individual scattering orders.

The Case τT ∼> 1

This is the most difficult case, as we should solve a famous equation, the equation
of Kompaneet. The result is still a power law, whose spectral index is approximately
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given by

α = −3

2
+

√
9

4
+ 4

y
(5.75)

The Case τT � 1: Saturation

In this case the interaction between photons and matters is so intense that they go to
equilibrium, and they will have the same temperature. But instead of a black-body,
the resulting photon spectrum has a Wien shape. This is because the photons are
conserved (if other scattering processes such as induced Compton or two-photon
scattering are important, then one recovers a black-body, because these processes
do not conserve photons). The Wien spectrum has the slope:

I (x) ∝ x3e−x/Θ (5.76)

At low frequencies this is harder than a black-body.

The Case τT > 1, y > 1: Quasi-saturation

Suppose that in a source characterized by a large τT the source of soft photons is
spread throughout the source. In this case the photons produced close to the surface,
in a skin of optical depth τT = 1, leave the source without doing any scattering (note
that having the source of seed photons concentrated at the center is a different case).
The remaining fraction, 1−1/τT, i.e. almost all photons, remains inside. This can be
said for each scattering order. This is illustrated in Fig. 5.11, where τT corresponds
to the ratio between the flux of photon inside the source at a given frequency and the
flux of photons that escape. If I start with 100 photons, only 1—say—escape, and
the other 99 remain inside, and do the first scattering. After it, only one escape, and
the other 98 remain inside, and so on, until the typical photon and electron energies
are equal, and the photon therefore stays around with the same final frequency until
it is its turn to escape. This “accumulation” of photons at x ∼ 3Θ gives the Wien
bump. Note that since at any scattering order only a fixed number of photons escape,
always the same, then the spectrum in this region will always have α = 0. This is a
“saturated” index, i.e. one obtains always zero even when changing τT or Θ . What
indeed changes, by increasing τT, is that (i) the flux characterized by x0 decreases,
(ii) the Wien peak will start to dominate earlier (at lower frequencies), while nothing
happens to the flux of the Wien peak (it stays there). Increasing still τT we fall in
the previous case (equilibrium, meaning only the Wien spectrum without the x0

part).
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Fig. 5.11 Multiple Compton scatterings when τT > 1 and y 	 1. For the first scattering orders,
nearly all photons are scattered: only a fraction 1/τT can escape. Therefore the number of photons
escaping at each scattering order is the same. This is the reason of the flat part, where F(x) ∝ x0.
When the photon frequency is of the order of Θ , photons and electrons are in equilibrium, and
even if only a small fraction of photons can escape at each scattering order, they do not change
frequency any longer, and therefore they form the Wien bump, with the slope F(x) ∝ x3e−x/Θ . If
we increase τT, the flux with slope x0 decreases, while the Wien bump stays the same
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Chapter 6
Synchrotron Self-Compton

Consider a population of relativistic electrons in a magnetized region. They will
produce synchrotron radiation, and therefore they will fill the region with photons.
These synchrotron photons will have some probability to interact again with the
electrons, by the Inverse Compton process. Since the electron “work twice” (first
making synchrotron radiation, then scattering it at higher energies) this particular
kind of process is called synchrotron self-Compton, or SSC for short.

6.1 SSC Emissivity

The importance of the scattering will of course be high if the densities of electrons
and photons are large. If the electron distribution is a power law [N(γ ) = Kγ −p],
then we expect that the SSC flux will be ∝ K2, i.e. quadratic in the electron density.

We should remember Eq. 5.54, and, instead of a generic Ur(ν), we should substi-
tute the appropriate expression for the specific synchrotron radiation energy density.
We will then set:

Us(ν) = 3R

4c

Ls(ν)

V
= 4π

3R

4c
js(ν) (6.1)

where 3R/(4c) is the average photon source-crossing time, and V is the volume of
the source. Now a simple trick: we write the specific synchrotron emissivity as

js(ν) = js,0ν
−α (6.2)

Remember: the α appearing here is the same index in Eq. 5.54. Substituting the
above equations into Eq. 5.54 we have

jssc(νc) = (4/3)α−1

2
τcjs,0ν

−α
c

∫ νmax

νmin

dν

ν
(6.3)

As you can see, js,0ν
−α
c = js(νc) is nothing else than the specific synchrotron emis-

sivity calculated at the (Compton) frequency νc. Furthermore, the integral gives
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Fig. 6.1 Typical example of
SSC spectrum, shown in the
νFν vs ν representation. The
spectral indices instead
correspond to the Fν ∝ ν−α

convention

a logarithmic term, that we will call lnΛ. We finally have:

jssc(νc) = (4/3)α−1

2
τcjs(νc) lnΛ (6.4)

In this form the ratio between the synchrotron and the SSC flux is clear, it is
[(4/3)α−1/2]τc lnΛ ∼ τc lnΛ. It is also clear that since τc ≡ σTRK and js(νc) ∝
KB1+α , then, as we have guessed, the SSC emissivity jssc(νc) ∝ K2 (i.e. electrons
work twice). Figure 6.1 summarizes the main results.

6.2 Diagnostic

If we are confident that the spectrum of a particular source is indeed given by the
SSC process, then we can use our theory to estimate a number of physical param-
eters. We have already stated (see Eq. 4.32) that observations of the synchrotron
spectrum in its self-absorbed part can yield the value of the magnetic field if we also
know the angular radius of the source (if it is resolved). Observations in the thin
part can then give us the product RK ≡ τc/σT (see Eq. 4.28). But τc is exactly what
we need to predict the high energy flux produced by the SSC process. Note that if
the source is resolved (i.e. we know θs ) we can get these information even without
knowing the distance of the source. To summarize:

F
syn
thick(ν) ∝ θ2

s

ν5/2

B1/2
→ get B

F
syn
thin(ν) ∝ θ2

s RKB1+αν−α → get τc = RK/σT

(6.5)

There is an even simpler case, which for reasons outlined below, is the most common
case employed when studying radio-loud AGNs. In fact, if you imagine to observe
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the source at the self absorption frequency νt, then you are both observing the thick
and the thin flux at the same time. Then, let us call the flux at νt simply Ft. We can
then re-write the equation above:

B ∝ θ4
s ν5

t

F 2
t

τc ∝ Ftν
α
t

θ2
s B1+α

Fssc(νc) ∝ τcFsyn(νc) ∝ τ 2
c B1+αν−α

c

∝ F
2(2+α)
t ν

−(5+3α)
t θ

−2(3+2α)
s ν−α

c

(6.6)

Once again: on the basis of a few observations of only the synchrotron flux, we can
calculate what should be the SSC flux at the frequency νc. Note the rather strong
dependencies, particularly for θs , in the sense that the more compact the source is,
the larger the SSC flux.

If it happens that we do observe the source at high frequencies, where we ex-
pect that the SSC flux dominates, then we can check if our model works. Does it?
For the strongest radio-loud sources, almost never. The disagreement between the
predicted and the observed flux is really severe, we are talking of several orders of
magnitude. Then either we are completely wrong about the model, or we miss some
fundamental ingredient. We go for the second option, since, after all, we do not find
any mistake in our theory.

The missing ingredient is relativistic bulk motion. If the source is moving towards
us at relativistic velocities, we observe an enhanced flux and blueshifted frequencies.
Not accounting for it, our estimates of the magnetic field and particles densities are
wrong, in the sense that the B field is smaller than the real one, and the particle
densities are much greater (for smaller B we need more particles to produce the
same synchrotron flux). So we repeat the entire procedure, but this time assuming
that F(ν) = δ3+αF ′(ν), where δ = 1/[Γ (1 − β cos θ)] is the Doppler factor and
F ′(ν) is the flux received by a comoving observer at the same frequency ν. Then

F
syn
thick(ν) ∝ θ2

s

ν5/2

B1/2
δ1/2

F
syn
thin(ν) ∝ θ2

s RKB1+αν−αδ3+α

(6.7)

The predicted SSC flux then becomes

Fssc(νc) ∝ F
2(2+α)
t ν

−(5+3α)
t θ−2(3+2α)

s ν−α
c δ−2(2+α) (6.8)

If we now compare the predicted with the observe SSC flux, we can estimate δ. And
indeed this is one of the most powerful δ-estimators, even if it is not the only one.
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Fig. 6.2 Typical example of the composite spectrum of a flat spectrum quasars (FSRQ) shown in
the Fν vs ν representation, to better see the flat spectrum in the radio. The reason of the flat spec-
trum is that different parts of the jet contributes at different frequencies, but in a coherent way. The
blue line is the SSC spectrum. Suppose to observe, with the VLBI, at 22 GHz: in this framework
we will always observe the jet component peaking at this frequency. So you automatically observe
at the self-absorption frequency of that component (for which you measure the angular size)

6.3 Why It Works

We have insisted on the importance of observing the synchrotron flux both in the
self-absorbed and in the thin regime, to get B and τc. But the self-absorbed part
of the synchrotron spectrum, the one ∝ν5/2 is very rarely observed in general, and
never in radio-loud AGNs. So, where is the trick? It is the following. In radio-loud
AGN the synchrotron emission, at radio frequencies, comes partly from the radio
lobes (extended structures, hundreds of kpc in size, very relaxed, unbeamed, and
usually self-absorbing at very small frequencies) and from the jet. The emission
from the latter is beamed, and it is the superposition of the fluxes produced in several
regions: the most compact ones (closer to the central engine) self-absorb at high
radio frequencies (say, at 100 GHz), and the bigger they are, the smaller their self-
absorbed frequency. But what is extraordinary about these jets is that the peak flux
of each component (i.e. the flux at the self-absorption frequency) is approximately
constant (in the past, this phenomenon was called cosmic conspiracy). Therefore,
when we sum up all the components, we have a flat radio spectrum, as illustrated by
Fig. 6.2.

Of course the emission components of the jet, to behave in such a coherent way,
must have an electron density and a magnetic field that decrease with the distance
from the central engine in an appropriate way. There is a family of solutions, but the
most appealing is certainly B(R) ∝ R−1 and K(R) ∝ R−2. It is appealing because
it corresponds to conservation of the total number of particles, conservation of the
bulk power carried by them (if Γ does not change) and conservation of the Poynting
flux (i.e. the power carried by the magnetic field).
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To our aims, the fact that the jet has many radio emission sites self-absorbing at
different frequency is of great help. In fact suppose to observe a jet with the VLBI,
at one frequency, say 22 GHz. There is a great chance to observe the emission zone
which is contributing the most to that frequency, i.e. the one which is self-absorbing
at 22 GHz. At the same time you measure the size. Then, suppose to know the X-ray
flux of the source. It will be the X-ray flux not only of that component you see with
the VLBI, but an integrated flux from all the inner jet (with X-ray instruments the
maximum angular resolution is about 1 arcsec, as in optical). But nevertheless you
know that your radio blob cannot exceed the measured, total, X-ray flux. Therefore
you can put a limit on δ (including constants):

δ > (0.08α + 0.14)(1 + z)

(
Ft

Jy

)(
Fx

Jy

)− 1
2(2+α)

(
νx

1 keV

)− α
2(2+α)

×
(

νt

5 GHz

)− 5+3α
2(2+α)

(
2θs

m.a.s.

)− 3+2α
2+α

[
ln

(
νs,max

νt

)] 1
2(2+α)

(6.9)

For some sources you would find δ > 10 or 20, i.e. rather large values.



Chapter 7
Pairs

In the presence of energetic particles and photons one has to wonder about the pos-
sibility that there are collisions between them. One result of these collisions is the
production of e±. If we have a photon–photon collision, then the original photons
might disappear, so that this process becomes an important absorption process.

The importance of this process came initially from the realization that the virial
temperature of protons, in the vicinity of black holes, can be very large. As an esti-
mate, the kinetic energy of a proton at 3 Schwarzschild radii is

Ekin = GMmp

R
� 150

(
3RS

R

)
MeV (7.1)

therefore particles can be very energetic in accreting systems. Be aware, on the other
hand, that protons can efficiently give their energy to electrons, that will emit this
energy. This would keep the protons much cooler than the above value.

The other key ingredient, realized in the ‘60s’, is that Active Galactic Nuclei
(AGNs) vary quickly (with a variability timescale tvar). By the causality argument
they cannot be larger than R ∼ ctvar. Therefore their emitting regions must be small,
and yet produce a huge luminosities. Densities are thus very large, and the colli-
sions between particles, between particles and photons, and between photons must
be probable. The discovery that blazars (AGNs with jets pointing at us) are very
efficient γ -ray producers is now a proof that high energy particles indeed exist in
these objects, that can in turn produce pairs. And finally, also Gamma Ray Bursts
(GRBs) are emitting γ -rays.

The importance of electron–positron pair production in the nuclei of AGNs was
realized quite early [1] and at the beginning of the ‘70s’ two seminal papers ap-
peared (one by Bysnovaty-Kogan et al. [2], the other by Bonometto and Rees [3]):
the first concerned thermal plasmas, the second was about pairs in non-thermal plas-
mas. Thereafter the field was sleepy for about one decade, when the paper by Light-
man [4] and Svensson [5, 6] resurrected the interests of the scientific community.

At those time it was believed that pair processes were fundamental for the for-
mation of the spectrum of all AGNs, galactic binaries and GRBs. Now we know
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that they do not play such a key role for AGNs and binaries, but they still could for
GRBs. Nevertheless the entire subject is worth studying, because, at the very least,
it allows to pose robust and important limits on the physics of all compact objects.

We will divide the study into thermal and non-thermal plasmas. We will see
two fundamental results of pairs in thermal plasmas, and will see in more detail
what happens when the particles have a relativistic (and not-Maxwellian) energy
distribution.

7.1 Thermal Pairs

Consider particles characterized by a Maxwellian distribution and a temperature T .
Since we are dealing with the production of e±, it is convenient to measure all
energies in units of mec

2 (=511 keV). Let us define:

Θ = kT

mec2
, x = hν

mec2
(7.2)

Furthermore, define:

n± = number density of positrons (+) and electrons (−)

nγ = number density of photons

ṅ± = production rate of pairs

ṅA = rate of annihilation of pairs

(7.3)

To these processes we should add the possibility that the leptons escape the source,
with a rate

ṅesc = rate of escape of leptons (7.4)

The process that can produce e± are:

γ γ → e+e−: ṅ+ = r2
e cn2

γ γ Fγγ

γp → e+e−p: ṅ+ = αFr2
e cnγ npFγ p

γ e → e+e−e: ṅ+ = αFr2
e cnγ neFγ e (7.5)

ee → e+e−ee: ṅ+ = α2
Fr2

e c(n+ + n−)2 Fee

ep → e+e−ep: ṅ+ = α2
Fr2

e c(n+ + n−)npFep

while the processes that annihilate pairs or that correspond to the escape of pairs
and electrons are:

e+e− → γ γ : ṅA = 2r2
e cn+n−FA

Escape: ṅesc = r2
e c(n+ + n−)2Fesc

(7.6)
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Table 7.1 Summary of the
F -factors for the main rates
of pair production
mechanism. Only
photon–photon and
particle–particle processes are
considered

Θ � 1 Θ 	 1 Comment

Fγγ
π2e−2/Θ

8Θ3
π lnΘ

2Θ2 Wien

Fγγ . . . 2
3 (Θ

2 )2α power law (α > −1)

Fee . . . 112
27π

ln3(2Θ)

Fep . . . ln3(2Θ)
π

FA π π lnΘ

2Θ2

Fesc
8π
3τT

βesc
8π
3τT

βesc

The F -factors are averages of the energy dependent part of the cross sections over
the Maxwellian distribution. They are dimensionless. The geometrical part of the
cross section is always of the form of αa

Fr2
e : αF = 1/137 is the fine structure constant,

and re is the classical electron radius. For photon–photon interaction, a = 0, for
particle–photon a = 1, for particle–particle a = 2. Consider that pair production
processes have an energy threshold: there must be enough energy to produce a pair.
But, when dealing with a Maxwellian distribution, one has particles (even if a few)
at all energies, so the process can occur even if Θ � 1. A brief summary of the
F -factors is presented in Table 7.1.

When dealing with processes involving photons, we have to know their spectral
distribution. This is why in Table 7.1 there are the rates for a Wien distribution
[L(x) ∝ x3 exp(−x/Θ)], and for a power law [L(x) ∝ x−α].

7.1.1 First Important Result

We impose that the source is stationary. This implies a detailed balance between the
created and the destroyed pairs:

ṅ+ = ṅA (7.7)

For simplicity, we neglected escape as a way to get rid of pairs (but in reality there
will always be some escape). To solve the above equation, we have to know the
F -terms, that are functions of Θ . Now the important point: for particle–particle
pair production processes, the F -terms are increasing functions of the tempera-
ture. On the contrary, the pair annihilation rate decreases with the temperature.
Compare this behavior with the “Klein–Nishina” decline of the scattering cross sec-
tion.

Therefore, if the temperature is high enough, there is the possibility that we pro-
duce more pairs than what we can destroy. The source then becomes non-steady.
As a result, if we want a steady source, we require that the temperature cannot be
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Fig. 7.1 To illustrate pair
balance: the annihilation rate
can balance pair production at
low temperatures, but as
Θ ≡ kT /mec

2 becomes
large, the particle–particle
processes increase their rate.
Above Tmax, annihilation
cannot keep up with pair
production, pair balance is
impossible, and the number
of pairs increases. Having
more particles to share the
available energy it is very
likely that the temperature
then decreases, making the
system to return to pair
balance

greater than a critical value. This value is:

Θ = 24 → kTmax = 12 MeV (7.8)

To see this, consider a plasma that is pair-dominated (i.e. neglect the original elec-
trons associated with protons). Let us set ne = n++n−. Neglect also all the particle–
photon processes. Stationarity demands:

α2
Fn2

eFee + n2
γ Fγγ = 2n2

eFA →
(

nγ

ne

)2

= 2FA − α2
FFee

Fγγ

≥ 0 (7.9)

Figure 7.1 shows how the two functions FA and α2
FFee behave. We require that

FA > α2
FFee, since otherwise the annihilation rate cannot keep the pace with the

production rate, the number of particles increases, and if they are at the same tem-
perature, then they continue to produce even more pairs. . . (and this would quickly
make an explosion).

But in reality what happens is that the energy stored in the system is limited: if
the number of particles increases, then they will share the available energy among
themselves. There will be less energy per particle → the temperature will decrease.
This is the second important result, that we will see now in more detail.

7.1.2 Second Important Result

Usually, when we increase the energy of a system, the temperature increases. But
when kT approaches mec

2, the pair production processes start to be important. New
particles are created: the energy per particle decreases → kT decreases.
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Example: Wien Plasmas

The name “Wien plasma” indicates a plasma in which the photons and particles are
in equilibrium, reached through scattering. We must have τT ≡ σTneR > 1. The
spectrum of the radiation is not a black body, because we do not have absorption
and re-emission, but only scattering. In these conditions, whatever the process of
photon production (i.e. bremsstrahlung) the spectrum of the radiation is

ṅγ (ε) ∝ ε2 exp(−ε/kT ) → ṅγ (x) ∝ x2 exp(−x/Θ) (7.10)

where ε = hν. ṅγ (ε) is the photon production rate. To convert it in a density of
photons, we use a very simplified equation of radiative transport:

nγ (x) = ṅγ (x)
R

c
(1 + τT) (7.11)

where R is the size of the region.
Pause and observe the above equation: when τT � 1, the difference between

nγ and ṅγ is the light crossing time of the photon inside the source. It is the time
needed for a photon created in the center to escape. When τT 	 1, we have that the
“transit time” is longer by a factor τT. This corresponds to have done τ 2

T scatterings
(remember the random walk) before escaping. The distance traveled between two
consecutive scatterings is the mean free path, namely R/τT. Hence the time needed
to escape is τ 2

TR/(τTc) = τTR/c. With this link between the production rate and the
density of photons, we can write the luminosity

L = 4

3
πR3

∫
εṅγ (ε) dε

= 4πR3

3R/c

∫
ε

nγ (ε)

1 + τT
dε (7.12)

When τT 	 1, we can set τT + 1 ∼ τT = σTRne. In this case

L = 4πRc

3σT
〈ε〉 nγ

ne
(7.13)

where 〈ε〉 is the mean energy of the photons. Note these remarkable facts:

1. L depends on the ratio nγ /ne. For pair plasmas (i.e. when pairs outnumber orig-
inal electrons), this ratio is fixed by the F terms.

2. For a Wien spectrum, 〈ε〉 = 3kT (and then 〈x〉 = 3Θ).
3. For large luminosities, the dominating pair production process is photon–pho-

ton.
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Fig. 7.2 Wien plasmas:
assuming that the pairs
outnumber original electrons,
there is a fixed relation
between the compactness and
the temperature. Large
compactnesses (and then
luminosities, for a given size),
are possible only if the
temperature is small

4. Therefore nγ /ne is fixed by (FA/Fγγ )1/2. From Table 7.1, assuming Θ � 1,
and assuming pair balance (i.e. ṅ+ = ṅA), we have

nγ

ne
=

(
FA

Fγγ

)1/2

=
(

8πΘ3

π2e−2/Θ

)1/2

nγ

ne
= 2

√
2/πΘ3/2e1/Θ

(7.14)

We can see how the luminosity of a pair dominated, steady Wien source depends
on the temperature:

L = 4

3
π

Rc

σT
3Θmec

22
√

2/πΘ3/2e1/Θ ⇒ L ∝ Θ5/2e1/Θ (7.15)

For a given R, high luminosities are possible only for low temperatures! Introducing
the compactness


 ≡ σTL

Rmec3
(7.16)

the luminosity–temperature relation has a simple form:


Wien = 16π
√

2/πΘ5/2e1/Θ, Θ � 1 (7.17)

Figure 7.2 shows 
Wien as a function of Θ . Note the minimum for θ ∼ 1. The dashed
line corresponds to the region where the asymptotic approximations are invalid.
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7.2 Non-thermal Pairs

In non-thermal plasmas the density of the particles is small, and the particle energies
can be large. If so, the production rate is usually large, corresponding to a large
density of very energetic photons even if the plasma is rarefied. In these conditions
the main pair production process is photon–photon.

The threshold energy for pair production is (x ≡ hν/mec
2):

x1x2 ≥ 2

1 − cos θ
(7.18)

where θ is the angle between the two photons: θ = 2π means head on collisions. In
this case the threshold is x1x2 ≥ 1. For tail on encounters (θ = 0) the process cannot
occur.

Naively, one would have thought that the threshold condition were x1 + x2 > 2,
namely that the sum of the photon energies is larger than 2mec

2. But the threshold
condition must be calculated in a reference frame where the energies of the two
photons are equal. To illustrate this point, consider the simple case of a head on
collision, with x1 �= x2. Let us go in a frame where x′

1 = x′
2. To do that, let us go in a

reference frame having a Lorentz factor Γ such that the two energies become equal.
In this frame the angle would still be 2π (head on collisions), and the two energies
will be x′

1 = x1/(2Γ ) and x′
2 = 2Γ x2. In this frame we require that

x′
1 + x′

2 ≥ 2 and x′
1 = x′

2 ⇒ 2Γ =
(

x1

x2

)1/2

x1

2Γ
+ 2Γ x2 ≥ 2 ⇒ x1x2 ≥ 1

(7.19)

The cross section resembles the Klein–Nishina cross section, and it has a peak for
x1x2 ∼ 2 where its value is

σγγ ∼ σT

5
, (x1x2 ∼ 2) (7.20)

The cross section is of course zero below threshold, and decreases after the peak.
See Fig. 7.3. This means that a γ -ray photon with energy x can interact with all
photons with energy xT > 1/x, but it will interact preferentially with those photons
near its threshold, i.e. xT = 1/x (here the subscript “T” stands for “target”). See
Fig. 7.4.

7.2.1 Optical Depth and Compactness

We want to calculate the optical depth τγ γ for a source of a given luminosity. As-
sume that this luminosity is at high frequencies. A photon with energy ∼0.5–1 MeV
will interact with photons of the same energy (i.e. 0.5–1 MeV) to produce pairs
(photons of 5 MeV will have x = 10 and will interact mainly with photons of en-
ergy xT ∼ 1/10, i.e. 50 keV).
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Fig. 7.3 The photon–photon
cross section, as a function of
x1x2(1 − cosψ), where ψ is
the angle between the
direction of the two photons
(i.e. ψ = 180◦ corresponds to
head on collisions). The cross
section is in units of the
Thomson cross section σT

Like all the optical depths, τγ γ depends on the cross section, the density of the
targets, and the size for which the process can occur. The density of targets is

nγ (1 MeV) � Urad(1 MeV) × 1 MeV

1 MeV
� LX

4πR2cmec2

⇒ τγ γ (1 MeV) � σT

5
R

LX

4πR2mec3
= σT

20π

LX

Rmec3
(7.21)

Fig. 7.4 Photons of energy x > 1 can interact with photons of energy xT > 1/x to produce pairs.
Since the cross section is decreasing when increasing the energy of the targets, and since for a
power law spectrum with α > 0 the number of photons is also decreasing when increasing their
energy, we can approximate the number of target photons as (1/x) · n(1/x). Note the “x–1/x”
symmetry when we plot F(x) in a logarithmic scale
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Therefore τγ γ depends (apart from the numerical factor) upon the so-called com-
pactness parameter 
, defined as:


 ≡ L

Rmec3
(7.22)

and we have:

τγ γ (1 MeV) � 


60
(7.23)

If we measure L in Eddington units, and R in Schwarzschild radii, we have


 = 2π

3

mp

me

L

LEdd

RS

R
⇒ 
Edd = 
max � 104 (7.24)

7.2.2 Photon–Photon Absorption

Let us assume that a compact source produces a spectrum with a power law shape:
F(x) ∝ x−α , where α is the energy spectral index. Assume also that this spectrum
extends above the threshold for pair production. We want to calculate the optical
depth for the γ –γ → e± process.

Consider a γ -ray photon with x > 1. First we need to know the number density
of the targets. These are all photons of energy xT > 1/x. On the other hand, we
know that the cross section decreases when increasing the energy of the targets.
In most cases, furthermore, we deal with spectral indices α > 0, meaning that also
the number of photons decreases with energy (but be aware that this “rule” has an
important exception, since several Gamma Ray Bursts have very flat spectra).

We then adopt the following important simplification:

τγ γ = R

∫ ∞

1/x

σγ γ n(x) dx

∼ σT

5
R

1

x
n

(
1

x

)

∝ 1

x

F(1/x)

x
∝ 1

x

(
1

x

)−α−1

∝ xα (7.25)

Therefore τγ γ increases increasing x: there are more targets (if α > 0). Consider
also that the spectral index α is the spectral index of the targets: the same calculation
would hold if we had a broken power law, with the break at—say—x = 1. Let us
calculate the resulting spectrum, recalling the simplest equation of radiative transfer
through a slab (a slab, instead of a sphere, is here used for simplicity):

I (x) = j (x)R

α(x)R

[
1 − e−τγ γ (x)

]
(7.26)
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Fig. 7.5 The expected
spectrum after photon–photon
absorption, but without
reprocessing. The initial
spectrum is a single power
law of index α. Absorption
produces a break at the
energy x̃, where the optical
depth τγ γ is unity. After the
break, the spectrum becomes
∝ x−2α

where I (x) is the monochromatic intensity; j (x) is the emissivity and α(x) is the
absorption coefficient. The little trick that we have used here is to multiply both the
numerator and the denominator by R, the size of the source, because in this way
α(x)R = τγ γ (x), and this allows to write:

I (x) = j (x)R

[
1 − e−τγ γ (x)

τγ γ (x)

]
(7.27)

Written in this way, it is easy to see the behavior when τγ γ (x) is much smaller or
much larger than unity:

τγ γ (x) � 1 ⇒ I (x) = j (x)R ∝ x−α

τγ γ (x) 	 1 ⇒ I (x) = j (x)R

τγγ (x)
∝ x−2α

(7.28)

There is a well defined break in the spectrum, occurring at the energy x̃ for which
τγ γ (x̃) ∼ 1, as illustrated in Fig. 7.5. . .

BUT

this is not the end of the story.
In fact the produced pairs emit, and contribute to the spectrum (if they remain

into the source). In general, each pair of electron and positron will share the energy
of the photon creating them: (i.e. the electron and positron will have γmec

2 ∼ hν/2,
i.e. γ = x/2). Therefore the radiation they can produce will be at energies smaller
than x. Depending on the energies, the secondary photons can themselves pair-
produce. Alternatively, the secondary photons can be used as targets, enhancing the
rate of the process, and the number of pairs that the source can produce. Therefore
the pair production process is

highly non-linear

photons that produce pairs that produce photons that produce pairs. . .
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7.2.3 An Illustrative Case: Saturated Pair Production

If the source is compact, meaning that the compactness parameter 
 > 1, the photon
density is huge. This means that the cooling timescale for inverse Compton scatter-
ing is very short, shorter than the light crossing time [remember that 
 measures not
only the importance of the γ –γ → e± process, but also the ratio tcool/(R/c), see
Eq. 4.38]. Therefore, since all leptons cool in a short time, to have a steady source
we have to replenish the “dead leptons” with new ones. In general, we have two
ways to do that.

The first is to have “heating”. With this word we mean that, besides cooling,
leptons are also heated by some mechanism. Then there is a competition between
energy losses and energy gains. Since the cooling rate for inverse Compton is ∝ γ 2,
it is very likely that cooling “wins” at high energies, and heating at low energies.
There will be a specific energy where heating and cooling balance. All leptons will
quickly move (in the energy space) towards this energy. In the absence of diffusion
(in the energy space) the leptons will form a monoenergetic distribution. Diffusion
will broaden this, and we may have the formation of a Maxwellian particle distribu-
tion even if the particles do not directly exchange energy between them.

The second way to “refill” the source with fresh energy is to continuously in-
ject new energetic particles throughout the source. A shock does exactly that: at
the shock front the particles are accelerated in a time that must be shorter than the
cooling time. Particles are therefore continuously injected downstream, where they
cool. Proton–proton collisions is another example (but also photon–photon colli-
sions producing pairs can do). There can be differences among these processes: for
instance, we expect a stratification in the downstream region of a shock, with the
most energetic particles closer to the shock front, while we might expect a more ho-
mogeneous distribution of particles following the injection through proton–proton
or photon–photon. We will neglect these differences in the following, and assume,
for simplicity, that the injection and cooling mechanisms are homogeneous.

Let us assume that we inject Q(γ ) leptons per second and per cm3:

Q(γ ) =
[

number of particles

cm3 s

]
→ injection (7.29)

This is not the quantity we need to calculate the spectrum. We want the density:

N(γ ) =
[

number of particles

cm3

]
→ density (7.30)

The injection rate and the density are linked by the continuity equation.

The Continuity Equation

In its simplest form it reads:

∂N(γ )

∂t
= ∂

∂γ

[
γ̇ N(γ )

] + Q(γ ) (7.31)
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It describes how N(γ ) evolves in time. If we want a steady source, we require
∂N(γ )/∂t = 0. This allows to obtain the solution:

N(γ ) =
∫ γmax
γ

Q(γ ′) dγ ′

γ̇
(7.32)

To go further let us assume that:

(1) the injection rate is a power law in energy: Q(γ ) = Q0γ
−s ;

(2) the cooling rate is quadratic with energy: γ̇ ∝ γ 2;
(3) all particles cool down to γ = 1, and then “disappear” (i.e. we neglect the accu-

mulation of “dead leptons”).

We have 2 cases:

(1) s < 1 ⇒ N(γ ) ∝ γ −2

(2) s > 1 ⇒ N(γ ) ∝ γ −(s+1)
(7.33)

If we inject a monoenergetic Q(γ ) = Q0 δ(γ − γmax) we have N(γ ) ∝ γ −2.
We have learnt that if N(γ ) is a power law, the emitted spectrum will also be a

power law, with a well defined link between the slope p of N(γ ) and the radiation
spectrum α. We have α = (p − 1)/2.

Now we have all the ingredients to see the effects of the reprocessing of pairs on
the emitted spectrum. To fix the ideas, consider a region of radius R close to an ac-
cretion disk emitting UV radiation. Assume to continuously inject, throughout this
region, relativistic leptons. Just to make it simpler, consider a monoenergetic injec-
tion at some γ = γmax. Assume that the inverse Compton process is the dominant
one. Let us see what happens in a few steps:

(1) After cooling, the particle density N(γ ) ∝ γ −2, and the inverse Compton spec-
trum will have L(x) ∝ x−0.5. Assume that the maximum photon energy (xmax)
is well above the threshold for pair production, and that the compactness is very
large for all photons with x > 1. In these condition, all high energy photons get
absorbed and produce pairs (saturated pair cascade).

(2) The generation of pairs means that, besides Q(γ ), there is another injection
term. Call it P1(γ ). We know the slope of P1(γ ). In fact it will be the same of
the photon spectrum, whose energy index is α = 0.5, and therefore its photon
index is α + 1 = 1.5.

P1(γ ) = 2ṅγ (2γ ) ∝ L(x)

x
, x > 1

P1(γ ) ∝ γ −α−1 = γ −1.5
(7.34)

(3) This new injection term originates a corresponding density of the first genera-
tion of pairs:

N1(γ ) ∝
∫ γmax
γ

P1(γ
′) dγ ′

γ 2
∝ γ −2.5 (7.35)
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And consequently the radiation spectrum due to this first generation of pairs
will have a spectral index

α1 = 2.5 − 1

2
= 0.75 (7.36)

(4) The cycle repeats. If pairs have enough energy to emit above threshold, their
photons will get absorbed, and generate the second generation of pairs.

P2(γ ) ∝ γ −α1−1 = γ −1.75

N2(γ ) ∝
∫ γmax
γ

P2(γ
′) dγ ′

γ 2
∝ γ −2.75 (7.37)

α2 = 2.75 − 1

2
= 0.875

(5) If these second-generation pairs have enough energy to produce photons above
threshold, we will have a third generation of pairs, and so on. A very interesting
result of this exercise is that the final spectral index tends towards unity.

αi+1 = αi

2
+ 1

2
(7.38)

where i stands for the ith generation of pairs. The equation above is valid even
if we start with a steep spectrum (α > 1). But in this case the reprocessed energy
will be a minor fraction of the total: most of the power is emitted at low frequen-
cies. So, even if we correctly derive the slope of the reprocessed spectrum, this
will be energetically unimportant.

If the initial spectrum is flat (i.e. α < 1), instead, the reprocessing due to pairs
can be very important, and will have the effect to soften the overall spectrum, redis-
tributing photons at lower frequencies.

7.2.4 Importance in Astrophysics

The pair production processes were intensively studied in the ‘80s’, especially in
the field of Active Galactic Nuclei (AGNs). Researchers, at that time, hoped that
the reprocessing due to pairs could explain the “universality” of the X-ray spectrum
of AGNs, that has αx ∼ 0.7. This would have implied a non-thermal origin of the
spectrum, required to extend much above threshold. In other words, it was though
that the typical AGN spectrum would resemble the one shown in Fig. 7.6. It was
then predicted that all AGNs, i.e. also the radio-quiet ones, emit in the γ -rays, with a
relatively steep power law shape. The first results obtained at high energies, coming
from the Compton Gamma Ray Observatory, CGRO satellite showed instead an
exponential cutoff at a few hundreds keV, and no signs of γ -rays in radio-quiet
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Fig. 7.6 Reprocessing due to pairs. A source produces a soft photon distribution (here it is a black
body, blue solid line). The relativistic primary leptons injected throughout the source produce, by
inverse Compton, a primary high energy spectrum ∝ x−0.5 (blue short-dashed line). All photons
above threshold get absorbed and transformed in pairs. They emit, and the spectrum of this first
generation of pairs is ∝ x−0.75 (green long-dashed line). Again, the photons above threshold are
absorbed and create the second generation of pairs, whose spectrum ∝ x−0.875 (dotted red line).
The process can continue, and the limiting spectrum has a spectral index close to unity. The thick
black solid line shows how the final spectrum would look like: it is a broken power law with indices
∼1 and ∼2 below and above x ∼ 1

AGNs. It was then concluded that (1) the X-ray spectra of radio-quiet AGNs have
a thermal origin (i.e. Comptonization) and (2) that pairs have no or little role in the
formation of this spectrum.

On the other hand, the main surprise of CGRO was the discovery that radio-loud
AGNs are strong γ -ray emitters, as a class (i.e. we believe that all of them do).
The properties of the observed spectra tell us that, again, photon–photon absorp-
tion inside the source rarely occurs (we do see a lot of γ -rays. . . ). The absence of
this effect poses a problem, because the high energy flux of these sources is vary-
ing quickly, requiring very compact sources, and the observed large luminosities
imply very large values of the compactness parameter. The process should indeed
occur, and yet it does not. The solution of this puzzle is relativistic motion, short-
ening variability timescales, blue-shifting the observed frequencies, and enhancing
the apparent luminosities. Indeed, requiring that the sources are optically thin for
photon–photon absorption, we can derive a limit on the bulk Lorentz factor of the
emitting sources.

Another interesting field where pairs can be important is Gamma Ray Bursts
(GRBs). Again, these sources emit high energy radiation that varies quickly. Since
we now know that they are cosmological, the implied powers are huge, as well as
the estimated photon densities. As in radio-loud AGNs, we can estimate a limit to
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their bulk Lorentz factor requiring that they are optically thin to the photon–photon
absorption process.

At this point you may ask if pairs are indeed produced in some class of sources. . .
The answer is yes, even if the reprocessing features outlined above do not have (yet)
a clear application to specific sources. At the beginning of the ‘90s’, it was possi-
ble to detect TeV photons from the ground, through optical Cherenkov telescopes.
Soon, low power blazars (i.e. BL Lac objects) were found to strongly emit at these
frequencies. Some of them are distant enough that the interaction of TeV photons
with the cosmic IR background photons is not negligible. We do see signs of the
corresponding absorption. The importance of the latter depends, of course, of the
density of the target photons, i.e. the level of the cosmic IR background. Since the
latter is not precisely known, one can use the absorption features of the observed
spectrum to estimate the background itself.

References

1. Jelley, J.V.: Absorption of high-energy gamma-rays within quasars and other radio sources.
Nature 211, 472 (1966)

2. Bisnovatyi-Kogan, G.S., Zeldovich, Ya.B., Syunyaev, R.A.: Physical processes in a low-density
relativistic plasma. Sov. Astron. 15, 17 (1971)

3. Bonometto, S., Rees, M.J.: On possible observable effects of electron pair-production in QSOs.
Mon. Not. R. Astron. Soc. 152, 21 (1971)

4. Lightman, A.P.: Relativistic thermal plasmas – pair processes and equilibria. Astrophys. J. 253,
842 (1982)

5. Svensson, R.: The pair annihilation process in relativistic plasmas. Astrophys. J. 258, 321
(1982)

6. Svensson, R.: Electron-positron pair equilibria in relativistic plasmas. Astrophys. J. 258, 335
(1982)



Chapter 8
Active Galactic Nuclei

8.1 Introduction

Up to the seventeenth century, the unaided eye was the only receiver that humanity
could use to observe the Universe. Evolution was able to apt this “instrument” to be
sensitive to the light of the star we happen to be orbiting, the Sun. The invention of
the telescope amplified the sensitivity of the eye and its angular resolution, letting
humanity discover, less than a century ago, that other galaxies exist, far beyond out
Milky way, and that these galaxies are moving apart: the Universe expands. How-
ever, all we could discover using the eye and its extension, the optical telescope,
concerned a tiny, very tiny, part of the entire electromagnetic spectrum. As soon as
technology enabled humanity to open new windows, we discovered other phenom-
ena, other objects, and could push our knowledge farther out in space and in time.

The opening of the radio window made the sixties the golden decade for astron-
omy, with the discovery of the microwave background and of pulsars. The third
great discovery made in that decade was that of quasars. The term “quasar” orig-
inally stood for “quasi-stellar radio source”, and refers to the fact that when an
optical telescope is pointed towards the direction of some radio source, which can
be as extended as minutes of arc in radio maps, the resulting optical plate shows a
source which looks like a star, i.e. a not extended, a “pointlike” object. This appar-
ently innocuous point is instead a gigantic energy plant, able to produce much more
power that an entire galaxy like our own, in a volume which is ridiculously small,
if compared with the dimension of the Galaxy, and comparable with our Solar Sys-
tem. The process that powers the stars, thermonuclear reactions, is not enough to
power quasars. For this reason we believe that at the core of these sources there is
a massive black hole, with a mass between a million and a billion the mass of the
Sun. Matter around the hole is attracted by the black hole gravity, it is compressed,
heated, and then radiates. This was realized quite soon [10, 12, 15, 16].

Another major advance came with the opening of the X-ray window, first (in the
sixties) with rocket experiments pioneered by Riccardo Giacconi, Bruno Rossi and
others, and then with the first X-ray satellites, in the early seventies. The Uhuru,
Ariel 5, HEAO–1 and then Einstein satellites made clear that all kinds of quasars
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were strong X-ray emitters: at the same time, people started to believe that quasars
were the major contributors to the cosmic diffuse X-ray background, already dis-
covered in 1962 [6].1

A third qualitative “jump” was the improvements of the interferometric technique
in the radio band, in the early seventies. Radio telescopes in different continents,
looking at the same source, can resolve details as close as a few tenths of a millisec-
ond of arc. This enabled us to discover that some radio emitting quasars have spots
of radio emission which are observed to move. Given the huge distances, this mo-
tion corresponds to velocities that exceed the speed of light. Far from challenging
special relativity, this “superluminal” motion, as it is now called, was even predicted
before it was observed, by Martin Rees in 1966,2 and corresponds to real fast motion
(but slower than the velocity of light!) at an angle close to our line of sight.

8.2 The Discovery

8.2.1 Maarten Schmidt Discovers the Redshift of 3C 273

From Maarten Schmidt [14]:

“The puzzle was suddenly resolved in the afternoon of February 5, 1963,
while I was writing a brief article about the optical spectrum of 3C 273. Cyril
Hazard had written up the occultation results for publication in Nature and
suggested that the optical observations be published in an adjacent article.
While writing the manuscript, I took another look at the spectra. I noticed that
four of the six lines in the photographic spectra showed a pattern of decreasing
strength and decreasing spacing from red to blue. For some reason, I decided
to construct an energy–level diagram based on these lines. I must have made
an error in the process which seemed to contradict the regular spacing pattern.
Slightly irritated by that, I decided to check the regular spacing of the lines by
taking the ratio of their wavelengths to that of the nearest line of the Balmer
series. The first ratio, that of the 5630 line to H–β , was 1.16. The second ratio
was also 1.16. When the third ratio was 1.16 again, it was clear that I was
looking at a Balmer spectrum redshifted by 0.16.

. . .

I was stunned by this development: stars of magnitude 13 are not supposed
to show large redshift! When I saw Jesse Greenstein minutes later in the hall-
way and told him what had happened, he produced a list of wavelengths of
emission lines from a just completed manuscript about the spectrum of 3C 48.
Being prepared to look for large redshift, it took us only minutes to derive a
redshift of 0.37.

. . .

1Giacconi was awarded the Nobel Prize in Physics in 2002.
2Martin Rees was born in 1942. He was 24 in 1966.
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The interpretation of such large redshifts was an extraordinary challenge.
Greenstein and I soon found that an explanation in terms of gravitational red-
shift was essentially impossible on the basis of spectroscopic arguments. We
recognized that the alternative explanation in terms of cosmological redshifts,
large distances, and enormous luminosities and energies was very speculative
but could find no strong arguments against it. The results for 3C 273 and 3C 48
were published six weeks later in four consecutive articles in Nature (Hazard,
et al. [9]; Schmidt [13]; Oke [11]; Greenstein [8]).”

8.3 Basic Components

The first quasars that were discovered were radio-loud, but we now know that these
radio-loud AGNs are only roughly the 10 % of all AGNs. The majority are radio-
quiet.

The basic structure of AGNs includes:

• A black hole, with 106 M� < M < 1010 M�. It is probably spinning at some
level, even if we do not have secure measurements of the spin value.

• An accretion disk. Matter with even a small amount of angular momentum, at-
tracted by the black hole gravity, spirals in and forms a disk. This is a major
source of power.

• An X-ray corona, sandwiching the accretion disk. It is supposed to be a hot layer,
or an ensemble of clumpy regions particularly active in the inner parts of the disk.

• An obscuring torus located at several parsec from the black hole, intercepting
some fraction of the radiation produced by the disk and re-emitting it in the in-
frared. Figure 8.2 shows the contribution of the accretion disk, the corona and the
molecular torus to the overall spectral distribution of a radio-quiet AGN.

• A region of many small clouds at a distance of ∼ 1017–1018 cm from the hole
(i.e. less than a parsec) moving rapidly (∼ 3000 km s−1). They intercept ∼10 %
of the ionizing radiation of the disk, and re-emit it in the form of lines. Doppler
shifts broaden the observed lines. This is why this region is called Broad Line
Region (BLR).

• At larger distance (∼100 pc) there is another region where less dense clouds are
moving, less rapidly. This is called Narrow Line Region (NLR).

• About 10 % of AGNs, besides accreting matter, are able to expel it in two oppo-
sitely directed jets. Their direction likely traces the rotational axis of a spinning
black hole. The material inside these jets is moving at relativistic speeds. There-
fore the jet emission is highly beamed, and their appearance depends on the view-
ing angle. AGNs whose jets are pointing at us are called blazars. AGNs whose
jets are pointing elsewhere are called radio-galaxies.



114 8 Active Galactic Nuclei

Fig. 8.1 The mass of the supermassive black hole correlates with the luminosity of the bulge of
the host galaxy and with the velocity dispersion of the stars of the central regions of the host galaxy.
From http://chandra.as.utexas.edu/~kormendy/bhsearch.html

Fig. 8.2 Spectrum from a
standard accretion disk, the
infrared torus and the X-ray
emitting corona

8.4 The Supermassive Black Hole

The black hole in the center of AGNs has a mass that “knows” of the mass of the host
galaxy. In fact there is a correlation between the black hole mass and the luminosity
of the bulge, due to the stars (see Fig. 8.1, left panel). The black hole mass correlates
even more with the velocity dispersion of these stars (see Fig. 8.1, right panel). The
correlation with the bulge luminosity is linear: MBH ∼ 2 × 10−3Mbulge, while the
correlation with the velocity dispersion σ is between MBH ∝ σ 4 and MBH ∝ σ 5.

http://chandra.as.utexas.edu/~kormendy/bhsearch.html
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8.5 Accretion Disk: Luminosities and Spectra

The luminosity of the accretion disk depends on the amount of the mass accretion
rate Ṁ . It is usually measured in solar masses per year. The process has a very
large efficiency η, defined as the fraction of rest mass energy that is converted into
radiation, before being swallowed by the black hole. We have

Ldisk = ηṀc2 (8.1)

The efficiency η depends on the details of the accretion mode, but it is of the order
of η ∼ 0.1. To produce a disk luminosity of Ldisk = 1046L46 erg s−1 we then require

Ṁ = Ldisk

ηc2
∼ 1.75L46 M� yr−1 (8.2)

There is a limit on the disk luminosity. This is called Eddington luminosity. It corre-
sponds to radiation pressure balancing gravity. Radiation pressure acts on electrons,
gravity acts both on electrons and their companions protons, that are heavier.

σT
LEdd

4πR2c
= GMmp

R2
−→ LEdd ≡ 4πcGMmp

σT
= 1.3 × 1038 M

M�
erg s−1 (8.3)

The Eddington luminosity depends only on the black hole mass. If the accretion rate
for some reason produces a luminosity Ldisk > LEdd, then the accreting mass feels
a radiation pressure that contrasts gravity, and the accretion stops, making Ldisk to
decrease below LEdd. We have a self-regulating process.

Ask yourself:

• What implicit assumptions have we made to derive LEdd?
• Did we neglect some other forces?
• Why is there σT?
• What happens if we have electron–positron pairs?
• Can you envisage cases in which the Eddington limit can be avoided?

8.5.1 Spectrum

Accreting matter, by spiraling inside, has to dissipate angular momentum and po-
tential energy. The potential energy of a proton at distance R (much larger than the
Schwarzschild radius RS ≡ 2GM/c2) is

Eg = GMmp

R
(8.4)

namely, it increases (or decreases, if you take it negative) as R decreases. More
energy has to be dissipated close to the black hole than far from it. Besides, the sur-
face 2 × 2πRdR (there are two faces of the disk. . . ) of the ring at a distance R and
width dR becomes smaller and smaller as you move close to the black hole. More
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energy has to be dissipated from a smaller surface. Assuming that the produced disk
radiation is a blackbody, this inevitably implies that the temperature must increase
as R decreases. If all rings of the disk emit black-body radiation, the temperature
profile is:

T =
[

3RSLdisk

16πησSBR3

]1/4[
1 −

(
3RS

R

)1/2]1/4

∝ R−3/4, for R 	 3RS (8.5)

where σSB is the Stefan–Boltzmann constant. The term in the second square brackets
allows for the fact that not all the orbits are stable around a black hole, but only
those beyond the marginally stable orbit: for a Schwarzschild black hole this orbit is
at 3RS. Matter at R < 3RS falls directly onto the hole in a short time. If we measure
R in units of the Schwarzschild radius RS, x ≡ R/Rs we have:

T =
[

3Ṁc6

64πσSBx3G2M2

]1/4[
1 −

(
3

x

)1/2]1/4

∝ Ṁ1/4

M1/2
x−3/4, for x 	 3 (8.6)

We can now have an idea of the emitted spectrum. It will be the sum of black-
bodies peaking at different temperatures: each ring of width dR emits a luminos-
ity dL:

dL = 2 × 2πσSBRT 4dR −→ dL

dR
= 2 × 2πσSBT −4/3T 4 (8.7)

We can then set:

dL

dT
= dL

dR

dR

dT
∝ σSBT −4/3T 4 dR

dT
∝ T 1/3 (8.8)

where we have used R ∝ T −4/3 and then (dR/dT ) ∝ T −7/3. This is valid as long
as R 	 3RS. Since there is a one to one correspondence between the temperature
and the peak frequency of the black-body, we have that

Ldisk(ν) ∝ ν1/3; hν � kTmax (8.9)

up to a frequency corresponding to the maximum temperature. Beyond that the
emission is not a superposition of black-bodies anymore, and only the region at
the maximum temperature contributes. Therefore, at large frequencies, we will see
an exponential drop. At the opposite side (small frequencies) we see only the black-
body produced by the outer radius of the disk Rout, and correspondingly, we see
the Raleigh–Jeans emission of that radius. Therefore we can approximate the disk
spectrum as:

Ldisk ∝ ν2, hν < kT (Rout)
(8.10)

∝ ν1/3e−hν/kTmax , hν > kT (Rout)
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Fig. 8.3 The spectrum from
a standard accretion disk,
emitting black-body radiation
from all its surface, with a
temperature profile given by
Eq. 8.5. The disk extends
from Rin = 3RS to different
values of Rout, as labeled.
Note that the ν1/3 slope is
present only for very large
values of Rout

The peak is determined by Tmax. We can estimate it by assuming that most of the
luminosity is produced within—say—10RS:

Ldisk ≈ 2 × π102R2
SσSBT 4

max

−→ Tmax ∼
(

Ldisk

200πR2
SσSB

)1/4

∼ 4.2 × 104
(

L46

M2
9

)1/4

K (8.11)

where M9 is the black hole mass in units of 109 M�. This temperature corresponds
to a frequency

νpeak ∼ kTmax

h
∼ 8.8 × 1014

(
L46

M2
9

)1/4

Hz (8.12)

i.e. in the near ultraviolet. For disks emitting at the same Eddington ratio (i.e.
Ldisk/LEdd = const), we have νpeak ∝ M−1/4. Figure 8.3 shows the spectrum calcu-
lated numerically according to the assumed temperature distribution of Eq. 8.5, for
different values of the outer radius of the disk Rout. Note that the ν1/3 behavior can
be seen only if Rout is very large.

8.6 Emission Lines

A distinctive characteristic of AGNs is the presence, in their optical spectra, of emis-
sion lines. They comes in two flavors: the broad and the narrow.



118 8 Active Galactic Nuclei

Fig. 8.4 Template of the
optical/UV spectra for
optically-selected quasars in
the Sloan Digital Sky Survey.
Notice the presence of broad
lines and also of the forbidden
[OIII] narrow line. Courtesy
of Giorgio Calderone

8.6.1 Broad Emission Lines

Figure 8.4 shows an atlas (i.e. the average spectrum of many sources) of the optical-
UV spectrum of typical AGNs. Typical lines are labeled. The most prominent are
the Hydrogen Lyα (transitions from n = 2 to n = 1), the lines from partially ionized
Carbon, Magnesium, Oxygen and then the Hydrogen Hα (transitions from n = 3 to
n = 2). If you look carefully, you should notice that most of these lines are broad,
while the [OIII] line is narrow. The square brackets indicate that this is a “forbidden”
line. So why do we see it? The reason to call this line “forbidden” is that when the
density is larger than some critical value, the de-excitation of the excited state is
made by collisions, occurring faster than the radiative ones. In our labs the densities
are always larger than the critical ones, so in the lab we do not see the line. This
gives some hints of the density where the narrow lines are made.

The most used way to quantify the width of a line is to measure it at a flux level
which is half of the peak flux. In this case we speak of Full Width at Half Maximum
(FWHM). Full width means that it is the entire width, not only one half as in the
case of a σ of a Gaussian. The units can be Å or km s−1. In fact the width can be
related immediately with a Doppler shift, and thus to a velocity.

The typical values for the broad emission lines are:

• FWHM: from 1000 to 10,000 km s−1. They are too large to be due to thermal
motions. In fact, with a temperature of T ∼ 104 K, we have that thermal broad-
ening implies:

v ∼
(

kT

mp

)1/2

∼ 106 cm s−1 = 10 km s−1 (8.13)

Therefore we need bulk motions (in different directions with respect to our line
of sight) of the material emitting the lines.

• Density: between 109 and 1011 cm−3. This comes from the presence or absence
of specific lines.

• Temperature: around 104 K. Again, this comes from the presence or absence of
specific lines.
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• Covering factor: around 0.1. A simple estimate comes from the luminosity of all
the broad lines with respect to the continuum.

• Distance: depends on the luminosity of the ionizing continuum. Recent studies
use the technique of “reverberation mapping”: taking spectra of a source regu-
larly, one can see the time delay between a variation of the continuum and the
variations of the lines. From these studies one gets a size:

RBLR ∼ 1017L
1/2
ion,45 ∼ 1017L

1/2
disk,45 cm (8.14)

Where we have assumed that most of the disk radiation can ionize the atoms in
the BLR. Please note that this is only approximately true.

One useful quantity when studying lines is the “ionization parameter ξ”. ξ can
be defined as the ratio of the densities of the ionizing photons and the electrons:

ξ = 1

ne

∫ ∞

νi

L(ν)

4πR2chν
dν = nγ,i

ne
∝ Ionization rate

Recombination rate
(8.15)

So, what is then the Broad Line Region? We do not know exactly yet. It can
be an ensemble of clouds in Keplerian motions around the black hole, or material
that is infalling, or outflowing, with a range of velocities. Broad lines could also
be produced within the accretion disk itself, but in this case we should see “double
horned” lines, because for a typical inclination of the disk, the opposite sides of
the disk produce redshifted and blueshifted lines. They are seen sometimes, but
not often. It has been proposed also that broad line clouds are stars with bloated
envelopes, coming close to the black hole. But a large number of them is required,
possibly too large. If broad lines are due to individual clouds, we must have many
of them, because each one contributes for only 10 km s−1 to the broadening, and if
they were a few, we should see a not completely smooth profile of the line. Estimates
range from 105 to billions. But the total required mass is tens of solar masses, a very
small quantity.

8.6.2 Narrow Emission Lines

The main properties of the narrow emission lines are:

• FWHM: around 300–500 km s−1. These lines are “narrow”, but in any case much
larger than thermal broadening.

• Density: around 103 cm−3. This comes from the presence of forbidden lines,
requiring small densities.

• Temperature: around 104 K. This comes from the presence/absence of specific
lines.

• Covering factor: around 0.01. This comes from the entire NLR luminosity di-
vided by the continuum luminosity.

• Distance: around 100 parsec. They can be resolved in nearby objects. Sometimes
they appear contained in a double cone.
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Since the NLR is located at greater distances than the BLR, they are unaffected by
the possible presence, in a region close to the accretion disk, of absorbing material.
This is a crucial fact, as we will soon see.

8.7 The X-Ray Corona

From Eq. 8.5 it is clear that the standard accretion disk is relatively “cold”, in the
sense that even the inner regions cannot reach ∼keV temperatures (1 keV ∼ 107 K).
On the other hand, AGNs are powerful X-ray emitters, and their X-ray spectrum
extends out to hundreds of keV. We must assume that there is an additional com-
ponent, besides the accretion disk, responsible for this emission. Observed in the
energy range 0.1–10 keV, with low spectral resolution, the X-ray spectrum can be
approximated by a power law: FX(ν) ∼ ν−αX , with αX ∼ 0.7–0.9. At first sight, it
seems a non-thermal spectrum, because it is characterized by a power law. But then
more accurate observations were made, that revealed three important features:

• Cut-off power law—When high energy observations in the 10–200 keV were
available, a cut-off was observed, of an exponential type. The spectrum was thus
a power law ending with an exponential cut:

FX(ν) ∝ ν−αXe−ν/νc (8.16)

where νc is somewhat different for different objects, and it is in the range 40–
300 keV.

• 6.4 keV Fe line—When spectral resolution was improved in the soft X-rays (soft
means 0.1–10 keV), an emission line appeared at ∼ 6.4 keV (see Fig. 8.5). This
is the Kα line from cold Iron. It is a fluorescent line. It means that a photon of
enough energy interacts with one electron of the inner shell of the Iron atom, and
ionizes it. There is then a “vacant place”, triggering a n = 2 → n = 1 transition.
The energy of this transition depends on the ionization state of the Iron. If it is
partially ionized, the energy of the jump is more. So the energy of the line tells
us about the ionization state of the Iron. For almost completely ionized Iron, we
should observe a line at 6.7 keV (and sometimes we do). A line at 6.4 keV means
that it is not largely ionized, and therefore it is relatively cold (i.e. less than 106 K).

• Compton hump—At the same time, the improved spectral resolution revealed
that the slope of the spectrum was more complex than a simple power law. There
is the presence of a hump, peaking at roughly 30 keV, superposed to the power
law. So the previously determined slope of the power law was not correct, because
it included the hump. Depurating from this extra component, the spectral index
of the power law becomes αX ∼ 0.9–1. The right panel of Fig. 8.5 illustrates this
point. The nature of this 30 keV “hump” was soon interpreted as the emission
coming from an irradiated disk, and was baptized “Compton hump” or “Compton
reflection”.

We will now discuss in somewhat more details these three components: (i) the power
law; (ii) the Compton reflection, and (iii) the Iron line.
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Fig. 8.5 Left: The “Compton reflection hump”, together with the produced emission lines. Right:
X-ray spectrum and its components: a power law continuum, a soft excess, and a “Compton reflec-
tion”, together with the Iron Kα line. From Fabian & Miniutti [4]

8.7.1 The Power Law: Thermal Comptonization

We have seen in the previous chapters that a power law does not necessarily imply
a non-thermal emission. Bremsstrahlung and thermal Comptonization are made by
thermal electrons, but their shape is a power law (ending in an exponential cut).
Following this idea we will now postulate that there is a region above and below the
disk, where the electrons are hot, much hotter than the disk. It is something similar
to the corona of our Sun, and therefore this region is called X-ray corona. It cannot
be located far from the black hole for several reasons:

1. Its luminosity is smaller than, but comparable to the luminosity of the accretion
disk. If its power depends on the release of the gravitational energy, it must be
close to the black hole (i.e. remember Eg ∝ 1/R).

2. The X-ray flux varies rapidly.
3. It must illuminate the disk and produce the ionization flux for the production of

the fluorescent Iron line. As we shall see, the Iron line is sometimes very broad,
as a result of Doppler broadening due to the high Keplerian velocities in the inner
regions of the disk. So also the “illuminator” must be close.

Can we derive some more information from the spectral shape? We can exclude
bremsstrahlung as the main radiation process because it is too inefficient, meaning
that we would require too many electrons to produce what we see. Variability tells
us that the emitting volume is small, so the electron density would be large, and
the Thomson optical depth would be much larger than unity. In these conditions,
Compton scatterings would be more important. Therefore let us assume that the
spectrum is due to thermal Comptonization. The temperature can be inferred from
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the exponential cut:

Θ ≡ kT

mec2
∼ hνc

mec2
= 0.2

hνc

100 keV
(8.17)

For each scattering, the energy gain A = x1/x of the photon is

A = 16Θ2 + 4Θ + 1 ∼ 1.9 (for Θ = 0.2) (8.18)

If τT < 1, to be checked a posteriori, we have a relation between the spectral shape,
the amplification factor A and the optical depth:

αX = − log τT

logA
−→ log τT = −αX logA −→ τT = A−αX = 0.5 (8.19)

where the last equality assumes αX = 1 and A ∼ 2. The Comptonization parame-
ter y must be of the order of unity, because A ∼ y/τT. What derived here are typical
values. There are sources where we need τT > 2: for these sources the simple equa-
tion we have used to relate αX , τT and A is not valid, and another relation must be
used.

Why the corona is so hot, even if the disk is cold? What are the mechanisms able
to extract energy from the accreting matter and to deposit it in the corona? We do
not know exactly, even if we suspect that the magnetic field plays a crucial role.

8.7.2 Compton Reflection

If the corona emits isotropically, half of its flux will be intercepted by the disk. We
have seen that the disk in AGNs should be relatively cold, in the sense that most of
its material is not ionized. X-ray photons will interact with the material in the disk
in the following ways:

1. at low energies (hν < 10 keV) they will be photoelectrically absorbed by the
metals present in the disk;

2. at intermediate energies (10 < hν < 40 keV) they will be Thomson scattered and
part of them will be scattered in the upward direction;

3. at large energies (hν > 40 keV) the scattering will not be in the Thomson regime,
but Klein–Nishina effects will start to be important: the scattering is preferen-
tially forward directed (and therefore the scattered photons will penetrate more
deeply into the disk) and the photon energy will be reduced. The decrease of the
energy means that photoelectric absorption, initially negligible, is again impor-
tant, and the photon will be absorbed.

The result is that some of the incoming radiation will be scattered back, with a
modified shape. This Compton reflection component will be peaked at ∼30 keV,
where photoelectric absorption and Klein–Nishina effects are not important. See
Fig. 8.5 to see the shape of this component, and how it modifies the original power
law spectrum.
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If the disk is hot, and partially ionized, the amount of free electrons will increase
the importance of Thomson scattering, and the “left shoulder” of the Compton re-
flection increases. Increasing the ionization state of the disk implies that the Comp-
ton reflection is not peaked any longer, but it retains, at low energies, the slope of
the original power law.

8.7.3 The Iron Line

Among the metals in the disk irradiated by the hot corona, Iron is the one producing
the most prominent emission line. This is due to a combination of two factors: it is
one of the most abundant elements (but not the most abundant), and it is the one
“suffering” less from the Auger effect. This is, in very simple terms, a non-radiative
transition: the energy of the n = 2 → n = 1 transition is used to expel an electron
from the atom instead of producing a photon. See the left panel of Fig. 8.5 to see
the relative strength of the emission lines. The energy, luminosity, width, and profile
of the Iron line are a powerful diagnostic of the condition of the inner parts of the
accretion disk.

The energy of the Kα Fe line (from 6.4 to 6.7 keV) tells about the ionization
state of the Iron, and thus the temperature of the disk.

The luminosity of the line tells about the amount of Iron, and thus about the
abundance of metals of the disk. The ratio about the line to continuum luminos-
ity tells about the geometry of the emitting region and possible anisotropy of the
continuum.

The width of the line tells about the velocities of the irradiated material forming
the line.

The profile (symmetric, double horned, skewed) tells about Doppler boosting
and gravitational redshift.

The studies of Iron lines in AGNs received a lot of attention in the recent past.
The most intriguing observation concerns the finding of relativistically broadened
lines. Figure 8.6 shows in a schematic way what happens. Suppose to see an accre-
tion disk from an intermediate angle (i.e. neither face on or edge on). If the emitting
material is moving with a non relativistic velocity (Newtonian case, upper panel) we
see a symmetric double peaked line, because the parts of the disk that are approach-
ing us emit a line that we observe blue-shifted, while the parts of the disk moving
away from us emit a line that we observe redshifted. The symmetry refers to the
fact that the blue and red lines have equal fluxes. But if the material is orbiting very
close to the black hole, the Doppler enhancement of the flux becomes important,
and the blue peak will have more flux than the red one (second panel from the top).
If the emission takes place very close to the black hole (within a few Schwarzschild
radii) also the gravitational redshift is important: then all frequencies are redshifted
by an amount that is larger as the emitting regions are closer to the black hole (third
panel). Furthermore, we have to account for gravitational light bending, changing
the emission pattern and thus the received flux.
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Fig. 8.6 Schematic profile of an intrinsically narrow emission line, modified by the interplay of
Doppler/gravitational energy shifts, relativistic beaming, and gravitational light bending occurring
in the accretion disc. Upper panel: the symmetric double—peaked profile from an annulus of
a non-relativistic Newtonian disc. Second panel: the transverse Doppler shifts make the profiles
redder; the relativistic beaming enhances the blue peak with respect to the red. Third panel: the
gravitational redshift shifts the overall profile to the red side and reduces the blue peak strength.
Bottom panel: The integration over all annuli gives rise to a broad, skewed line profile. See also
Fabian & Miniutti [4]

All these effects have opened the way to the possibility to test general relativity
in the strong field case.

Besides this, there is another, crucial effect, related to the spin of the black hole.
This is conceptually simple: for a Kerr black hole fastly rotating the innermost stable
orbit is not 3RS (i.e. 6 gravitation radii = 6Rg), but it moves closer to the hole,
becoming equal to one gravitational radius for a maximally rotating hole. The closer
to the hole the emitting material is, the larger the velocities, and the stronger the
gravitational effects. So the broadening of the line becomes larger, as it is illustrated
in Fig. 8.7. We can tell the spin of the black hole by observing the profile of the Iron
line.

8.8 The Torus and the Seyfert Unification Scheme

Seyfert galaxies are spiral galaxies with a bright core, that host an Active Galactic
Nucleus. They come in two flavors: the Type 1 and the Type 2. Type 1 Seyferts have



8.8 The Torus and the Seyfert Unification Scheme 125

Fig. 8.7 How to distinguish
a Schwarzschild (no spin) and
a Kerr (maximally rotating)
black hole. The Kα Fe line is
broader in the case of the
Kerr hole, since part of it is
produced closer to the hole,
and therefore it is more
Doppler and gravitationally
shifted. See also Fabian &
Miniutti [4]

Fig. 8.8 The optical
spectrum of a Seyfert Type 1
and Type 2. Note that Type 1
Seyferts have both broad and
narrow lines, while Type 2
Seyferts have only narrow
lines

both broad and narrow emission lines, while Type 2 have only narrow lines. See
Fig. 8.8.

Antonucci & Miller [1] made spectropolarimetry observations of NGC 1068, a
nearby and bright Seyfert 2 galaxy. In total light the broad lines were not seen,
but in polarized light they emerged. Therefore the broad line clouds are there, but
for some reason their emission is overwhelmed by the unpolarized continuum, and
in total light their emission is not seen. Antonucci & Miller then argued that this
is due to obscuration. Figure 8.9 illustrates the point. If there is a big and dusty
torus surrounding the accretion disk, and the observer is looking from the side, the
emission from the disk and the BLR is absorbed by the dust in the torus. Instead the
narrow lines, coming from an extended region ∼100 pc in size, are not intercepted
by the torus, and can reach observers located at any viewing angle.
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Fig. 8.9 Schematic illustration of the disk+torus system, with the broad line clouds that are close
to the disk, and the narrow line clouds external to the torus. Narrow lines are then observable at all
viewing angles, while side observers cannot see the disk and the BLR. However, if a populations
of free electrons fill the region (black little dots), they can scatter the emission line photons into
the line of sight. Since the scattering angle is close to 90°, the scattered photons are polarized.
Observing in polarized light the broad emission lines emerge

Furthermore, if the “funnel” of the torus is filled with free electrons, they can
scatter the emission of the disk and the broad lines also into the direction of side
observers. The amount of this scattered radiation can be tiny, but it is polarized
(remember: for scattering angles close to 90° the scattering photons are maximally
polarized). Observing the polarized light we select these photons and discard the
much more intense unpolarized light: as a result the broad lines now appear. The
free electrons act as a periscope.

This simple idea implies that all Seyferts are intrinsically equal, but their ap-
pearance depends on the viewing angle: observers looking face on can see all the
components (and thus also the broad lines): they see a Type 1 object. Observers
looking from the side see only the narrow lines and the emission of the torus. Be-
ing at some distance from the accretion disk, the torus in fact intercepts part of the
disk emission and re-emits it in the infrared. We can even predict approximately at
which frequencies the torus emission will start to be important. This is because the
dust cannot exist at temperatures hotter than ∼2000 K. Taking this temperature as
reference, we have ν ∼ 3kT /h ∼ 1014 Hz, which corresponds to a wavelength of
3 μ. If we are correct, then we predict that all the radiation that the torus intercepts
from the disk comes out at frequencies smaller than 1014 Hz.
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Fig. 8.10 The X-ray background. The lines are synthesis models assuming some prescriptions
about the intrinsic slope of the X-ray spectrum and the ratio of “thick to thin” AGNs. From Gilli
et al. [7]

8.8.1 The X-Ray Background

Another very important consequence of the presence of the torus concerns the X-
ray emission, because also X-rays are absorbed by the torus, especially in the soft
energy range (soft X-rays are much more absorbed than hard X-rays). In addition,
the walls of the torus will also “reflect” X-rays, producing a “Compton reflection
hump”, like the disk. The main difference is that the fluorescent Iron line will in this
case be extremely narrow (since the typical velocities of the torus material, located
far from the black hole, are very small).

The importance of the absorption depends on the metals present along the line
of sight. For solar abundances, there is a well defined relation between the amount
of metals and the amount of hydrogen. So it is customary to express the amount
of absorption in terms of the “column of hydrogen” along the line of sight. It is
NH = nHR, where R is the size of the absorbing region, and nH is the hydrogen
number density. The units of NH are thus cm−2. When NH > 1024 cm−2 we have
that τT = σTNH becomes close or larger than unity, and we speak of Compton thick
sources.

With these properties, a mixture of Type 1 and Type 2 objects can account for
the X-ray background, namely, the integrated X-ray emission from all sources. It
was a mystery for decades, because its spectrum in the 0.5–10 keV energy range is
very hard (αX ∼ 0.4), unlike most of the known extragalactic X-ray sources (that
have αX ∼ 1). Figure 8.10 shows a modern collection of data defining the X-ray
background from 0.5 to 300 keV.



128 8 Active Galactic Nuclei

To explain it, we need a population of very hard X-ray sources and the Type 2
ones have indeed the right properties: since soft X-rays are more absorbed than hard
ones, their spectrum is very hard. Since the X-ray continuum is depressed, but the
reflection hump (from the torus) is not, they can contribute significantly at ∼30 keV,
just where the X-ray background peaks.

8.9 The Jet

About 10 % of AGNs, besides accreting matter, are able to expel part of it at rela-
tivistic speeds in two oppositely directed jets. These radio-loud AGNs were the first
to be discovered, due to their relevant radio emission. Radio jets can be spectacular,
since they can reach a few Mpc in size, tens of times the radius of their host galax-
ies. AGNs with relativistic jets were believed to always have giant ellipticals as host
galaxies, but now this paradigm is challenged by the observations of Narrow Line
Seyfert 1 Galaxies (beware that the term “narrow” here indicates lines that are in
any case broad, but “less” broad than usual, namely with FWHM < 2000 km s−1).

The radio emission produced by jets is only a small fraction of the entire electro-
magnetic power they emit. We now know that most of it is produced in the range
mm-optical and in the γ -ray band. In turn, the electro-magnetic output is only a
small fraction of the total power carried by the jet. Most of it is carried in the form
of bulk kinetic energy of the matter flowing relativistically, and by the moving mag-
netic field (i.e. Poynting flux); in powerful sources it reaches the large radio struc-
ture: the hot spots and the radio lobes. In less powerful sources, however, these
structures are absent. We call the powerful sources FR II radio-galaxies, and the
weaker sources FR I radio-galaxies. The name FR comes from Fanaroff & Riley,
that classified radio-galaxies in this way.

8.9.1 Flat and Steep Radio AGNs

Since the emitting material is moving with a bulk Lorentz factor Γ , its radiation is
beamed. What we see is therefore amplified if the jet points at us, and depressed if
the jet points elsewhere. The large structures (hot spots and radio-haloes), instead,
are not moving, and their emission is isotropic. The ratio between the jet emission
and the radio-lobe emission is thus a strong function of the viewing angle.

Figure 8.11 illustrates this point: the jet is producing a very flat spectrum [i.e.
F(ν) ∝ ν0] up to 1012 Hz. The observed intensity is Ijet(ν) ∝ δ3I ′

jet(ν
′), and changes

a lot changing the viewing angle. The emission coming from the extended, un-
beamed, region is characterized by a steeper slope [for instance: Ilobe(ν) ∝ ν−1].
Therefore:

• At very low frequencies we expect that the emission is always dominated by the
lobe, for all viewing angles.

• Lobe and jet emission are equal at some frequency that is larger as the viewing
angle increases.
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Fig. 8.11 The emission of the jet is beamed, and depends on the viewing angle θv. Since it is
a superposition of emission from several blobs of different sizes, the spectrum is flat up to the
self-absorption frequency of the most compact component (hundreds of GHz). The emission from
the radio-lobe is instead isotropic, and is optically thin. Since it is not beamed, it does not depend on
the viewing angle. The overall appearance of the radio spectrum depends therefore on the viewing
angle. Steep radio spectra correspond to large θv (and small δ), flat radio spectra to small θv (and
large δ)

• For misaligned jets the depressing factor due to beaming is so large that we do
not see the jet, we see only the lobe emission.

• Aligned sources show a flat radio spectrum. Misaligned sources show a steep ra-
dio spectrum. The slope of the radio spectrum is thus an indication of the viewing
angle.

• If we perform a radio survey with some limiting flux, the number of aligned
and misaligned sources changes according to the observing frequency: if we use
178 MHz, we preferentially look at the lobe emission, and we can pick up aligned
and misaligned sources; if we observe at 30 GHz we pick up preferentially the
flat, aligned sources.

To summarize, and simplifying a bit:
flat radio spectrum −→ aligned, beamed
steep radio spectrum −→ misaligned, de-beamed.

8.9.2 Blazars

Sources whose jet is pointing at us are called blazars. The sub-classification of
blazars is rather complex, reflecting either the way they were discovered (radio or
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X-rays) or the location of their synchrotron peak (in νFν ), or the presence or ab-
sence of broad emission lines. Particularly relevant in this respect is the concept of
equivalent width of a line (EW). It is defined as

EW =
∫

F0 − Fλ

F0
dλ (8.20)

where Fλ is the total flux (line + continuum) and F0 is the flux of the continuum.
This describes the EW of both absorption and emission lines, but in the case of
emission lines the result is negative, so sometimes the absolute value is given. The
units of the EW are Å.

The classical subdivision of blazars is

BL Lac objects (BL Lacs)—They have weak or absent lines. Their equivalent
width is EW < 5 Å.
Flat Spectrum Radio Quasars (FSRQs)—They have strong emission lines,
whose EW > 5 Å.

Since we are considering very variable objects, this subdivision depends on the
state of the source when it is observed: this is because the EW is a ratio between
the line and (beamed) optical flux, and the latter varies. Now we believe that the
absence or weakness of the lines in BL Lacs is not due to a particularly amplified
continuum, but it is an intrinsic property. In other words, the luminosity of the lines
in BL Lacs is less than in FSRQs.

The Overall Spectrum of Blazars

Figure 8.12 shows the source 3C 454.3, a powerful FSRQ, that was the brightest
blazar detected in the γ -ray band for a few years. One can see the extraordinary
variability, encompassing 2 orders of magnitude in flux, both in the γ -ray band
and in the optical. When the optical flux is in the low state, one can also see the
contribution of the accretion disk (see the little upturn of the optical-UV data at
1015 Hz). The dashed black line illustrates a model for the disk emission (1015 Hz)
and the torus emission (at 1013 Hz).

Radio sources in general, and blazars in particular, emit over the entire elec-
tromagnetic spectrum, from the radio (down to 107 Hz) to the TeV band (up to
1027 Hz). The main characteristics are:

• The overall spectral energy distribution (SED), once plotted in νFν , shows two
broad peaks. The location of the peak frequencies varies from object to object,
but in general the first peak is between the mm and the soft-X-rays, while the
high energy peak is in the MeV–GeV band.

• They are variable, at all frequencies, but especially at high energies. Minimum
variability timescales range between weeks and tens of minutes.

• In restricted frequency ranges, their spectrum is a power law.
• The variability is often (even if not always) coordinated and simultaneous in dif-

ferent energy bands (excluding the radio).
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Fig. 8.12 The overall electromagnetic spectrum of 3C 454.3, the most luminous γ -ray source up
to now. Note the large amplitude variability, even day-by-day. Dates refer to the year 2009. Lines
correspond to fitting models. See Bonnoli et al. [2]

Fig. 8.13 The blazar
sequence. As the bolometric
luminosity increases, the peak
of the two humps shifts to
smaller frequencies, and the
high energy hump becomes
more important. From Fossati
et al. [5]; Donato et al. [3]

• They are often polarized, in the radio and in the optical.
• The high energy hump often dominates the power output.

Besides these common features, it seems that blazars form a sequence of SEDs,
according to their observed bolometric luminosity. Figure 8.13 illustrates this point.
It was constructed taking the average luminosity in selected bands, and consider-



132 8 Active Galactic Nuclei

ing ∼100 blazars coming from radio and X-ray complete samples (complete here
means: it contains all blazar whose flux is greater than a limiting one). Note that:

• Low power blazars, that are BL Lacs (i.e. no lines), are bluer than powerful
blazars, that are FSRQs (with lines). Bluer means that the peak frequencies of
both peaks are larger.

• The high energy hump increases its relevance as we increase the bolometric lu-
minosity. At low luminosities both humps have the same power, while the most
powerful FSRQ have a high energy hump that is ∼10× the low energy one.

Interpretation of the SED of Blazars

First Hump It is rather straightforward to interpret the first hump of the SED as
synchrotron emission. Since it sometimes varies rapidly and simultaneously (at least
in optical-UV-soft-X-rays bands) we believe that it comes from a single region of
the jet.

High Energy Hump It is believed (but with no unanimity) that it is produced by
the Inverse Compton process, by the same electrons producing the synchrotron. The
seed photons could be the synchrotron photons themselves (especially in low power
blazars) and/or the emission line photons (when the lines are present, so only in pow-
erful objects. . . ). Remember that in the comoving frame of the jet, the lines are seen
blue-shifted (factor Γ ) and the arrival time is contracted (another factor Γ ) so that in
the comoving frame the radiation energy density of the lines is seen enhanced by Γ 2.

Simple Estimates

Suppose to know the luminosity of both peaks of a blazar, call them LS and LC,
and the location of their peak frequency νS and νC. You also have information about
the minimum variability timescale tvar. Assume that the emitting region is only one,
and approximate it with a sphere of radius R.

Let us consider two cases. For the first we will assume that the high energy emis-
sion is due to the synchrotron self-Compton process (SSC), in the second we will
assume that it is due to inverse Compton on the photons of the broad line region.
For both cases the size R is given by

R ∼ ctvar
δ

1 + z
(8.21)

SSC In this case the ratio between LC and LS is given by:

LC

LS
= U ′

rad

U ′
B

= LS

4πR2cδ4

1

U ′
B

(8.22)

where primed quantities refer to the comoving frame. Note the δ4 factor to pass
from the observed to the comoving luminosity. We have assumed that U ′

rad is en-
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tirely due to the synchrotron luminosity, with no contribution from the SSC one. Is
that correct? It is, if most of the SSC radiation is at frequencies so large that the
corresponding scattering process occurs in the Klein–Nishina regime, and thus can
be neglected. From Eq. 8.22 we can derive (U ′

B = B ′2/8π ):

B ′δ2 = LS

R

(
2

cLC

)1/2

−→ B ′δ3 = (1 + z)
LS

ctvar

(
2

cLC

)1/2

(8.23)

Now let us use the peak frequencies: the ratio between them is

νC

νS
= γ 2

peak (8.24)

Note that this is a ratio, therefore there is no δ, no (1+z). The observed synchrotron
peak frequency is given by

νS ∼ 4

3
ν′

Bγ 2
peak

δ

1 + z
= 4

3

eB ′

2πmec
γ 2

peak
δ

1 + z
(8.25)

Inserting Eq. 8.24 we arrive to

B ′δ = 3πmec

2e

ν2
S

νC
(1 + z) = 1

3.7 × 106

ν2
S

νC
(1 + z) (8.26)

We have two equations (Eq. 8.23 and Eq. 8.26) for the two unknowns B ′ and δ.

Example SSC Figure 8.14 shows the SED of the BL Lac 0851 + 201 (=0J 287),
at z = 0.306. For this source we have: LC ∼ LS ∼ 1046 erg s−1. We can guess νC ∼
1020 Hz extrapolating the X-ray and the γ -ray spectra. Let us take νS ∼ 5×1013 Hz,
and assume that tvar = 104 s.

From Eq. 8.23 we have B ′δ3 = 3.5 × 103 G and from Eq. 8.26 we derive B ′δ =
8.8 G. Therefore δ = 20 and B ′ = 0.44 G. Notice that if νC were 1021 Hz instead of
1020 Hz, than we would have found δ = 63 and B ′ = 0.014 G. These estimates are
very sensitive to the νC/νS ratio. The larger the separation between the two peaks,
the larger δ and the smaller B ′.

Inverse Compton with Broad Line Photons In this case let us assume that most of
the radiation energy density in the comoving frame comes from the BLR. We have

U ′
rad ∼ Γ 2 LBLR

4πR2
BLRc

(8.27)

We may remember that LBLR ∼ 0.1Ldisk, and that RBLR ∼ 1017Lion,45 cm. This
assumptions lead to (assuming that Lion ∼ Ldisk):

U ′
rad ∼ Γ 2

12π
(8.28)

a remarkable result, due to the RBLR ∝ L
1/2
disk dependence. As long as the emitting

region of the jet is within the BLR, then U ′
rad depends only from Γ , but not on the
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Fig. 8.14 The SED of the BL Lac 0851 + 202, together with a fitting model. Red points are
simultaneous, grey points are archival data

power of the disk or the actual value of the size of the BLR. By making the ratio
with U ′

B we have

LC

LS
= U ′

rad

U ′
B

= 2Γ 2

3B ′2 −→ B ′

Γ
=

(
2LS

3LC

)1/2

(8.29)

The synchrotron peak frequency is still given by Eq. 8.25, if νS is larger than the self
absorption frequency νt. The peak frequency of the Compton hump is now given by:

νC = 4

3
γ 2

peakνLyα

δΓ

1 + z
(8.30)

where we have taken the frequency of the Lyα line as the characteristic frequency
of the seed photons (since the Lyα line is the most intense). The factor Γ δ comes
from considering the scattering in the comoving frame, where the typical frequency
is ν′

Lyα ∼ Γ νLyα , and then blueshifting the frequency after the scattering in the co-
moving frame by the factor δ. Making the ratio νC/νS we have

νC

νS
= (4/3)γ 2

peakνLyαδΓ/(1 + z)

(4/3)γ 2
peakν

′
Bδ/(1 + z)

= Γ νLyα

ν′
B

(8.31)

From this equation we have:

B ′

Γ
∼ 8.8 × 108 νS

νC
(8.32)
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Unfortunately, Eq. 8.32 and Eq. 8.29 give two relations for the same quantity: B ′/Γ .
We cannot derive B ′ and Γ separately. But we can use them to derive a relation be-
tween the peak frequencies and the synchrotron and inverse Compton luminosities:

νC

νS
∼ 109

(
LC

LS

)1/2

; νS > νt (8.33)

This can be thought as a consistency check, to see if our assumption of inverse
Compton on the BLR photons is reasonable. Instead, to the aim to derive the pa-
rameters, we have to use additional information. One important information comes
from the superluminal motion of the sources. Usually, it is observed at 5–22 GHz. At
these frequencies the flux is due to a region of the jet self-absorbing there. This re-
gion is not the same as the one producing most of the emission (we know it because
of variability: most of the emission is produced in a much more compact region,
self-absorbing at νt ∼ 100–1000 GHz). Therefore we must make the assumption
that both the viewing angle and the bulk Lorentz factor do not change from the two
regions. If this is true, and assuming that the viewing angle is θv ∼ 1/Γ , we can set

Γ ∼ βapp (8.34)

and thus solve for B ′. Additional information may come from the details of the SED,
if we see some signs of the SSC emission: even if not dominating the bolometric
luminosity, it may contribute, especially in the X-rays.

Example EC By EC we mean “External Compton”, namely that the relevant seed
photons for scattering are produced externally to the jet, as in the case of the BLR
photons. Suppose that we observe a source as the one shown in Fig. 8.15. Assume
βapp = 10. From the figure LC/LS = 10. Assume νC ∼ 1022 Hz. We do not observe
directly the synchrotron peak, but the radio spectrum is flat (∝ ν0) and the optical
emission is steep [i.e. F(ν) ∝ ν−1.5 in the optical, once the contribution from the
accretion is subtracted].

From Eq. 8.29 we have B ′/Γ = 0.26. Assuming Γ = βapp, we derive B ′ = 2.6 G.
From Eq. 8.32 we have νS = νC(B ′/Γ )/8.8 × 108 = 3 × 1012 Hz. Is that consistent
with what we observe? Yes: the radio and optical spectrum indicate a peak (in νFν )
between the last observable radio frequencies (usually 100 GHz = 1011 Hz) and the
optical spectrum. The value of νS = 3 × 1012 Hz is larger than the self-absorption
frequency of our emitting region.

8.9.3 The Power of the Jet

It is not easy to estimate the total power of the jet. There are a few ways to do it,
including studying the energy content of the radio lobes, thought to be the calorime-
ter of the source, and, more recently, the energy required for the jet to produce an
“X-ray cavity” in cluster of galaxies, around the central giant galaxies that are also
radio-loud sources.
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Fig. 8.15 The SED of the blazar 1622–253, together with a fitting model. The peak of the Comp-
ton emission νC = 1022 Hz, and the ratio LC/LS = 10. The figure shows also the contribution from
the accretion disk, its X-ray corona and the IR torus (short dashed line) and SSC (long dashed)

The jet power has different components:

• The jet emits, and the produced radiation must be at the expenses of the jet power.
Calculating the power (in all directions) in the form of radiation sets a lower limit
to the jet power.

• The jet transports matter. If anything, we must have the electrons responsible for
the radiation we see. They are relativistic in the comoving frame (lower case γ ),
and have also a relativistic bulk motion (capital Γ ).

• The jet transports also protons. How many? This is controversial, because if the
emission is totally produced by electron–positrons, there are no protons. If instead
the emitting plasma is a normal electron–proton one, than there is one proton per
emitting electron.

• The jet transports a magnetic field. There is a Poynting flux.

All these components can be formally accounted for by writing

Pi = πR2Γ 2βcU ′
i (8.35)

where U ′
i is the comoving energy density of the ith component: when dealing with

the emitting electrons we will have

U ′
e = mec

2
∫

γN(γ )dγ = 〈γ 〉n′
emec

2 (8.36)
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When dealing with the magnetic field we have

U ′
B = B ′2

8π
(8.37)

and when dealing with the radiation we have

U ′
rad = L′

4πR2c
= L

4πR2cδ4
(8.38)

For the protons, assuming them cold,

U ′
p = U ′

e
mp

me

n′
p

〈γ 〉n′
e

(8.39)

The logic is the following: we sit at some place along the jet, stationary with respect
to the black hole, and cut a cross sectional surface of the jet. We count how many
photons, protons, electrons and magnetic field are passing by in one second. One
factor Γ accounts for the different mass or energy as seen in the lab frame (i.e. a
proton will have a mass Γ mp) and the other factor Γ comes because the density
we see is more than the comoving density (lengths are smaller in the direction of
motion). This is a flux of energy, i.e. a power.

It is found that the jet is powerful, often as powerful as the accretion disk, and
sometimes more. Furthermore, the jet of powerful blazars cannot be dominated by
the Poynting flux. This is to be expected, since the synchrotron component in these
sources is only a minor fraction of the bolometric luminosity, dominated by the
inverse Compton component. This limits the possible values of the magnetic field.

8.9.4 Lobes as Energy Reservoirs

It is also found that the energy dissipated into radiation is only a minor fraction of the
jet power, at least in powerful FSRQs. Most of the power goes to energize the lobes.
There, we have a relaxed region, in the sense that the dimensions are huge, and the
magnetic field must be small (i.e. B ∼ 10−5 G). Large dimensions also means that
the radiation energy density is small. Therefore the radiative cooling timescales are
very long. Particles have not enough time to emit their energy, that instead goes to
increase the dimension of the region. Extended radio lobes are therefore a reservoir
of the energy that the jet has provided through the years. If we could measure the en-
ergy content of the lobe and its lifetime, than we could measure (E/t): the average
power of the jet.

Lobes emit in the radio, through synchrotron radiation. They are so big that we
can easily resolve them. So we know their size. To produce synchrotron radiation,
there must be some magnetic field and relativistic particles. For a given observed
synchrotron luminosity, we could have relatively large magnetic fields and fewer
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particles, or, on the contrary, less magnetic field and more particles. These solutions
are not energetically equivalent, as we shall see. When the energy content in the
magnetic field and particles balance, then we have the minimum total energy. To see
this, consider a lobe of size Rlobe emitting Llobe by synchrotron:

Llobe = 4π

3
R3

lobemec
2
∫

N(γ )γ̇Sdγ

= 4π

3
R3

lobe
4

3
σTc

B2

8π

〈
γ 2〉ne (8.40)

This gives ne:

ne = 9Llobe

2R3
lobeσTcB2〈γ 2〉 (8.41)

The energy contained in the magnetic field is

EB = 4π

3
R3

lobe
B2

8π
(8.42)

The energy contained in the particles depends if we have cold or hot protons. We
do not know. We can parametrize our ignorance saying that the proton energy is k

times the energy contained in the relativistic electrons. Therefore the particle energy
in the lobe is

Ee,p = 4π

3
R3

lobe〈γ 〉nemec
2(1 + k)

= 6π
〈γ 〉mec

2

〈γ 2〉
Llobe

σTcB2
(1 + k) (8.43)

Note the dependence on B2: EB ∝ B2 , while Ee,p ∝ 1/B2.
Due to these scalings, the total energy Etot = EB +Ee,p will have a minimum for

EB = Ee,p. This condition of minimum energy also corresponds to equipartition.
Figure 8.16 shows an example, for which the equipartition magnetic field is Beq ∼
10−5 G: with this field we minimize the total energy requirement. In the specific
case illustrated in Fig. 8.16, the minimum energy contained in the lobe is Etot ∼ 1060

erg. If we knew its lifetime, we could calculate the average jet power. Assuming 10
million years ∼3 × 1014 s, we have 〈Pjet〉 ∼ 3 × 1045 erg s−1. In this case the lobe
synchrotron luminosity is only a tiny fraction (i.e. ∼3×10−3) of the jet power. This
estimates neglects adiabatic losses, likely to be important. Suppose to include them:
how they modify the estimate on the average jet power?

8.10 Open Issues

Research in the AGN field is still active, because the open issues are many. The
previous notes tried to give a glimpse of the “common wisdom” picture of the main-
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Fig. 8.16 The energy
contained in the lobe in
magnetic field (EB) and in
particles (Ee,p). The black
line is the sum. We have
assumed that the lobe of 100
kpc in size emits synchrotron
luminosity
Llobe = 1043 erg s−1 and that
protons have the same energy
of the emitting electrons (i.e.
k = 1). For the particle
distribution, we have assumed
γmin = 1, γmax = 105 and
p = 2.5 [i.e. N(γ ) ∝ γ −2.5]

frame about AGNs, but we should avoid to take it as absolutely not controversial.
The following is an incomplete list of open problems.

• Black hole masses. We have several ways to estimate the black hole masses, but
the uncertainties are still large. Knowing the mass more precisely, we could know
all the quantities in Eddington units, which is more physical.

• Black hole growth. When did the supermassive black hole form? It takes time
to build them up. Can we live with black hole seeds of stellar size or do we need
something more exotic?

• Accretions modes. When the density is small, protons cannot interact efficiently
with electrons (responsible for the emitted radiation and the cooling). The en-
ergy remain in the protons, that do not cool. The pressure increases, and the disk
puffs up, and the density becomes smaller still. At what accretion rate is there
the transition? Are Coulomb collisions the only way for protons and electrons to
interact?

• What is the broad line region? We still do not know if it is an ensemble of
clouds in Keplerian motion, or some form of inflow or outflow.

• The infrared “torus”. It should be unstable. Is it formed by a clumpy medium?
Can it be, instead, a tilted disk? Where does it begin: is it a separate structure or
just a continuation of the disk?

• The acceleration mechanisms in the jet. Shocks are the best bet, but shocks
accelerate protons more than electrons. Accounting for hot (and relativistic) pro-
tons would increase the estimates for the jet power. What is the role of magnetic
reconnection?
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• The power of jets. We just started to estimate them in a reliable way, but we
are still far from robust conclusions. Main uncertainties: the amount of electron–
positron pairs, and the contribution of hot protons.

• The spin of the black hole. The rotational energy of the black hole is a huge
energy reservoir that can be extracted. Does the black hole spin rapidly? Is it the
spin energy that is used to accelerate relativistic jets? Is the spin at the root of the
radio-loud/radio-quiet dicotomy?
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